Batch A: Basics of smooth maps and atlases

Let $X = (X, \mathcal{A}_X)$ and $Y = (Y, \mathcal{A}_Y)$ be smooth *n*-manifolds. Recall that a continuous map $f : X \to Y$ is called *smooth* if

 $\psi \circ f \circ \phi^{-1}$

is a smooth map where ver it is defined. (Here, ϕ is a chart for X, and ψ is a chart for Y.)

1. Diffeomorphisms

A function $f: X \to Y$ is called a *diffeomorphism* if (i) f is a bijection, (ii) f is smooth, and (iii) f^{-1} is also smooth.

- (a) Show that the identity map id_X is a diffeomorphism.
- (b) Let \mathcal{A}_X and \mathcal{A}'_X be two different smooth atlases for X. Show that $\operatorname{id}_X : (X, \mathcal{A}_X) \to (X, \mathcal{A}'_X)$ is a diffeomorphism if and only if $\mathcal{A}_X \cup \mathcal{A}'_X$ is a smooth atlas for X.
- (c) Show that the relation

 $\mathcal{A}_X \sim \mathcal{A}'_X \iff \mathcal{A} \cup \mathcal{A}'$ is a smooth atlas on X

is an equivalence relation. Note that every equivalence class has a natural representative given by the *maximal* atlas. For this reason, some authors take a smooth manifold to be a pair (X, \mathcal{A}) where \mathcal{A} is a maximal smooth atlas for X.

- (d) Let \mathbb{R} be the real line with the standard smooth structure. Show that the map $f : x \mapsto x^3$ is a homeomorphism. Show that it is not a diffeomorphism.
- (e) The "set of all smooth manifolds" is not necessarily a set. Regardless, if somebody gives you some set of smooth manifolds, show that diffeomorphism defines an equivalence relation.

2. Smooth maps are continuous

A map $f : X \to Y$ is alternatively called smooth at $p \in X$ if there exists a chart V about f(p), and a chart U about p with $f(U) \subset V$, such

that

$\psi\circ f\circ \phi^{-1}$

is a smooth map (between open sets in \mathbb{R}^n and \mathbb{R}^m). Show that a smooth map f is continuous.

3. The sphere

Verify that stereographic projection from the north and south poles give a smooth atlas on S^n .