
Homework Ten

Due Nov 17. As usual, if a problem has an asterisk on it, you do not
have to hand it in. But you may assume it for the rest of the problems.

1. *The Five Lemma

The five lemma states the following: Consider a commutative diagram
of abelian groups

A ��

��

B ��

��

C ��

��

D ��

��

E

��
A� �� B� �� C � �� D� �� E�

and assume that the top and bottom rows are both exact. If every vertical
map except the middle map is an isomorphism, then the middle vertical
map is also an isomorphism.

Prove the five lemma. Note that you can relax the hypotheses so that
the leftmost vertical map is just a surjection, and the rightmost vertical
map is just an injection.

Like the previous homework about long exact sequences of cohomology
groups, this will require some diagram-chasing.

2. Compactly supported deRham cohomology and
Mayer-Vietoris

Let M be a smooth manifold. A differential form α on M is called
compactly supported if α = 0 outside of some compact subset K ⊂ M .
Note that if α is compactly supported, so is dα.

(a) Let Ωk
c (M) denote the R vector space of compactly supported k-forms

on M . Prove that Ω∗
c(M), with the usual deRham differential, forms a

cochain complex.
We call its cohomology, H∗

c (M), the compactly supported deRham
cohomology of M .
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(b) Show that if U ⊂ M is an open subset, extension by zero defines a map
of cochain complexes (i.e., a chain map)

Ω∗
c(U) → Ω∗

c(M).

If i : U → M is the inclusion map, we let i∗ : H∗
c (U) → H∗

c (M) denote
the induced map on compactly supported cohomology.

(c) Let U, V ⊂ M be open sets that cover M . Let

iU : U ∩ V �→ U, iV : U ∩ V �→ V, jU : U �→ M, jV : V �→ M

denote the inclusion maps. Show that there is a Mayer-Vietoris se-
quence for compactly supported deRham cohomology—that is, show
that the following sequence

. . . δ �� Hk
c (U ∩ V )

(iU )∗⊕−(iV )∗ �� Hk
c (U)⊕Hk

c (V )
(jU ))∗⊕(jV )∗ �� Hk

c (M)

δ�� Hk+1
c (U ∩ V ) �� . . .

is exact. (Hint: Construct a map between three cochain complexes that
is exact, just like in the last homework. Note also that the directions of
the arrows has been reversed compared to usual deRham cohomology.)

Remark 2.1. Note that with respect to all smooth maps f : M → N ,
ordinary deRham cohomology behaves contravariantly. However, with re-
spect to smooth open embeddings, we have a theory of compactly supported
cohomology that behaves covariantly.

3. Compactly supported deRham cohomology for Rn

In this problem, we will compute the above cohomology groups for Rn.
The answer is non-trivial!

(a) Show that Hk
c (Rn) = 0 for all k > n. (It’s for an easy reason.)

(b) Show that H0
c (Rn) = 0 for all n > 0. (This is already different from

usual H0
dR(Rn).)

(c) Consider the integration map

H1
c (R) → R

given by sending a compactly supported cohomology class [α] to the
integral

�
R α. Show this is well-defined. Note it is an R-linear map of

vector spaces.
(d) Show it is surjective.
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(e) We will show injectivity as follows: Assume α is in the kernel of the
above integration map. Writing α = f(x)dx, consider the function

F (x) =

� x

−∞
f(t)dt.

Show this is compactly supported, and that this function shows that α
is exact.

(f) For n ≥ 2, show that the integration map

Hn
c (Rn) → Rn

is a surjection.
(g) Show that the integration map Hn

c (Rn) → R is injective. (Hint: You
know what the ordinary deRham cohomology group is, so if [α] is in the
kernel, then α = dβ for some (n− 1)-form β. This β may not be com-
pactly supported, but deduce that

�
Sn−1 β = 0 by Stokes’s Theorem.

Since Sn−1 is smoothly homotopy equivalent to Rn minus a small ball,
β is also exact on Rn − ball, so we can find some γ on Rn − ball such
that dγ = β. Constuct a function f so that β − d(fγ) is a compactly
supported form on all of Rn whose derivative is α.)

(h) Show that Hk
c (Rn) = 0 for 0 < k < n.

(i) Show that two smooth manifolds can be smoothly homotopy equivalent,
but have non-equivalent compactly supported deRham cohomology.

(j) Show that if two compact smooth manifolds are smoothly homotopy
eqiuvalent, then they must have isomorphic compactly supported deR-
ham cohomology classes.

Remark 3.1. The take-away is that compactly supported cohomol-
ogy detects more than the smooth homotopy equivalence class when your
manifold is non-compact.

Recollection of some linear algebra

Let V be a real vector space. Recall that

T (V ) =
�

k≥0

V ⊗k

is defined to be the tensor algebra, or free associative algebra generated by
V . Writing out the above formula, we have

T (V ) ∼= k ⊕ V ⊕ (V ⊗R V )⊕ (V ⊗R V ⊗R V )⊕ . . . .

Given an element of the form v1⊗ . . .⊗vk, and another element of the form
u1 ⊗ . . . ul, their product is defined by concatenating the tensor product:

v1 ⊗ . . .⊗ vk ⊗ u1 ⊗ . . .⊗ ul.
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So we see that T (V ) is a graded associative algebra, whose degree k part is
given by V ⊗k. Note that R ∼= V ⊗0 contains the unit for this algebra.

Consider the two-sided ideal I generated by elements of the form v⊗v ∈

V ⊗2.

Definition 3. The exterior algebra over V is defined to be the quotient
algebra T (V )/I.

We will write the equivalence class of v1 ⊗ . . .⊗ vk as

v1 ∧ . . . ∧ vk.

We let ΛkV denote the vector subspace of T (V )/I spanned by these forms,
and write

Λ•V =
�

k≥0

ΛkV

for the entire quotient algebra T (V )/I.

Example 3.2. Let u+ u� = v. Then

v ⊗ v = (u+ u�)⊗ (u+ u�) = u⊗ u+ u⊗ u� + u�
⊗ u+ u�

⊗ u�.

The lefthand side goes to zero under the quotient map, and we end up with

[u⊗ u�] = −[u�
⊗ u�] ∈ Λ2V

which is to say
u ∧ u� = −u�

∧ u.

Remark 3.3. By definition, the vector space ΛkV satisfies the following
universal property: If there exists any alternating, multilinear map f :
V ⊗k → R, then f factors uniquely through a map from ΛkV to R:

V ⊗k

f

����
��

��
��

��
ΛkV

∃! ����� R.

Our convention for ΛkV ∨ ∼= (ΛkV )∨

Now let V ∨ = homR(V ) be the dual vector space. Then there is a map

�, � : Λk(V ∨)⊗ ΛkV → R
given as follows: If we have elements of the form

f = f1 ∧ . . . ∧ fk ∈ ΛkV ∨, v = v1 ∧ . . . ∧ vk ∈ ΛkV,

we define
�f, v� := det(fi(vj))
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where on the right, we are taking the determinant of a k× k matrix whose
(i, j)th entry is given by the real number fi(vj).

The bracket above defines a homomorphism

Λk(V ∨) → hom(ΛkV,R)

where the target, by the universal property of Λk, is isomorphic to the
vector space

Alt(V ⊗k,R)
of alternating maps.

Taking V = TpM for each p ∈ M , this shows that a differential k-form
at a point p defines a map

(TpM)⊗k
→ R

which is alternating. In this way, we can think of differential k-forms as
specifying a way of “eating” k tangent vectors and spitting out a number,
for any p ∈ M .

Remark 3.4. Another convention in use to define this map is choosing

�f, v� :=
1

k!
det(fi(vj))

But we will not use this convention.

Example 3.5. Given a k-tuple of vector fields Ya ∈ Γ(TRn), a =
1, . . . , k and a differential k-form

α =
�

I=(i1<...<ik)

fIdxi1 ∧ . . . ∧ dxik

we get a function

α(Y1, . . . , Yk) =
�

I

fI det(Yaia)

where Yab is the bth component of the vector field Ya. That is,

Ya =
�

b

Yab
∂

∂xb
.

Even more explicitly,

α(Y1, . . . , Yk) =
�

I

fI

�
�

σ∈Sk

k�

a=1

Yσ(a)ia

�
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4. Forms as multilinear maps

By writing things out in local coordinates, prove

dα(Y0, . . . , Yk) =
k�

i=0

(−1)iYiα(Y0, . . . , Ŷi, . . . , Yk)

+
�

0≤i<j≤k

(−1)i+jα([Yi, Yj ], Y0, . . . , Ŷi, . . . , Ŷj , . . . , Yk).

This is just combinatorics and being careful about sign changes.

5. Line bundles are invertible

(a) Prove that for any real line bundle E, the bundle Hom(E,E) is triv-
ial. Conclude that the set of isomorphism classes of line bundles on a
smooth manifold E forms a group under tensor product.

(b) Prove the above statements for complex line bundles, where now Hom(E,E) =
HomC(E,E) is the bundle of complex-linear maps.

In algebraic geometry, where we consider the algebraic line bundles on
an algebraic space, this group is called the Picard group of the space.

6. *Eulerian fun

(a) Show that if π : E → M is a trivial vector bundle of rank 2k, then it is
orientable, and its Euler class is 0 ∈ H2k(M) (regardless of orientation).

(b) Let E be a complex vector bundle, and let ER denote the same smooth
manifold, thought of as a real vector bundle of rank 2k. Note that being
a complex vector bundle means E is oriented as a real vector bundle.
Show that

e(ER) = ck(E).

(c) Note that CP 1 = S2 can be covered by two open sets, each equal to
C, with an intersection diffeomorphic to C− {0}. Then the transition
maps z �→ 1/z is a holomorphic transition function, and in particular
we can give the tangent bundle a complex structure. Show that this
complex vector bundle is not a trivial complex vector bundle. (We’ve
proven Euler-Gauss-Bonnet for 2-manifolds.)

(d) Likewise using the Euler class, show that the tangent bundle of S2 is
non-trivial as a real vector bundle.

The tautological bundle on projective space

Recall that CPn is the space of all lines in Cn+1 going through the
origin. It is also described as the quotient space

(Cn+1
− {0})/C×
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where C× acts by
t(z0, . . . , zn) = (tz0, . . . , tzn).

It turns out this is a smooth manifold, which you can take for granted in
this problem.

The tautological bundle L on CPn is defined to be the submanifold

L ⊂ CPn
× Cn+1

consisting of those points (p, �z) for which �z ∈ p. That is, �z is a vector in
Cn+1 contained in the line p ∈ CPn.

Let L⊥ denote the orthogonal complement of L inside the trivial bundle
CPn×Cn+1. (For instance, by choosing the standard Hermitian metric on
Cn+1.

7. *Chern classes for projective spaces

(a) Show that TCPn ∼= HomC(L,L⊥). (This isn’t really possible unless we
define the complex structure on CPn in more detail. So you can move
on if you don’t figure it out.)

(b) Assuming (a), show that

TCPn
⊕ C ∼= L∨

⊕ . . .⊕ L∨.

This will come in handy in the rest of this problem.
(c) Let α be a smooth 2-form on CP 1 whose integral over CP 1 is 1 (with

the orientation given from the complex structure on its tangent bundle).
We denote its cohomology class by x = [α] ∈ H2

dR(CP 1). Show that

c1(CP 1) = 2x.

It may help to examine Problem 6.
(d) Prove

c1(L
∨) = x.

Using the canonical inclusion j : CP 1 �→ CPn, and observing that
j∗L = L, conclude that c1(L∨) = y is non-zero for CPn. (Here, j∗L is
pulling back the tautological bundle on CPn, while the righthand side
is the tautological bundle on CP 1.)

(e) Assume that the Euler characteristic of CPn is non-zero for all n. Ex-
plain why we have proven that there is an injective ring homomorphism

R[t]/tn+1
→ H∗

dR(CPn).

(f) If you know cellular cohomology, explain why the above ring homomor-
phism is an isomorphism.
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