Homework Eight

1. The power of metrics in understanding characteristic classes

Recall that any real vector bundle E admits a Riemannian metric, and a Levi-Civita connection.
(a) Show that if X is a skew-symmetric matrix (so $X^{T}=-X$) then so is X^{i} for any odd i.
(b) Fix a Riemannian metric on E, and let Ω be the curvature 2 -form associated to the Levi-Civita connection. Prove that if i is odd, $s_{i}(\Omega)=0$ as a differential form. (Obviously, we can then conclude that $\left[s_{i}(\Omega)\right]=$ $\left.0 \in H_{d R}^{*}(M).\right)$ Conclude that for an odd degree invariant polynomial $f,[f(\Omega)]=0 \in H_{d R}^{*}(M)$.
(c) Fix a Hermitian metric on a complex vector bundle E, and let Ω be the curvature 2-form associated to the Levi-Civita connection. By considering $\sigma_{i}(\Omega)$, conclude that the Chern classes can be represented by real forms, so that they lie in the real deRham cohomology of M.

2. Dual complex vector bundles and their Chern classes

Given a complex vector bundle E, we define its conjugate complex vector bundle \bar{E} to be the complex vector bundle which is the same smooth manifold as E, and has the same projection map $\pi: \bar{E} \rightarrow M$, but for which each fiber has the conjugate complex-linear action. To be explicit, let v, u be vectors in E_{p}, and suppose that

$$
i v=u
$$

where i is the complex multiplication given to us with E. Then for \bar{E}, we define

$$
i v:=-u
$$

(a) Show that $c_{k}(\bar{E})=(-1)^{k} c_{k}(E)$. (Hint: Given a connection on E, what connection does it induce on \bar{E} ? Compare their curvatures. You probably want to be careful with your notation to differentiate between the action of i on E, and the action of i on \bar{E}, and you'll want to use a Hermitian metric at the end.)
(b) Further, let E^{*} be the complex vector bundle where the fibers are now identified with $\operatorname{hom}_{\mathbb{C}}(E, \mathbb{C})$. (If you like, there is a contravariant functor from $V^{*} \mathbb{C}_{\mathbb{C}}$ to itself given by $\operatorname{hom}_{\mathbb{C}}(-, \mathbb{C}) . E^{*}$ is the induced vector bundle.)

Show, using a Hermitian metric, that $E^{*} \cong \bar{E}$ as complex vector bundles.

Note that this gives rise to the possibility that E is not isomorphic to E^{*}-for by part (a), the Chern classes of E and E^{*} may differ. This is in contrast to the real case, where a Riemannian metric always induces an \mathbb{R}-linear isomorphism $E \cong E^{*}$.

3. Pontrjagin classes are determined by Chern classes

Note that we have a functor

$$
\mathrm{Vect}_{\mathbb{R}} \rightarrow \text { Vect }_{\mathbb{C}}
$$

which takes any real vector space V to the tensor product $V \otimes_{\mathbb{R}} \mathbb{C}$. This tensor product is a complex vector space because it receives an action by the complex numbers from the right, for instance. To be explicit, given a primitive element

$$
v \otimes z \in V \otimes \mathbb{C}
$$

we have

$$
s(v \otimes z)=s v \otimes z=v \otimes s z, \quad i t(v \otimes z)=t v \otimes i z=v \otimes i t z
$$

for $s, t \in \mathbb{R}$. As a further explicit illustration, any element

$$
\sum_{i} v_{i} \otimes z_{i} \in V \otimes \mathbb{C}
$$

is equal to the element

$$
\sum_{i} \operatorname{Re}\left(z_{i}\right) v_{i} \otimes 1+\sqrt{-1}\left(\sum_{i} \operatorname{Im}\left(z_{i}\right) v_{i} \otimes i\right)
$$

If we have a linear map $f: V \rightarrow V^{\prime}$, we have an induced linear map $f \otimes \mathrm{id}_{\mathbb{C}}: V \otimes \mathbb{C} \rightarrow V^{\prime} \otimes \mathbb{C}$.

Let E be a real vector bundle. Then one can define a complex vector bundle $E \otimes_{\mathbb{R}} \mathbb{C}$. This is called the complexification of E.
(a) Show that a real connection ∇ on E induces a complex connection on $E \otimes \mathbb{C}$.
(b) Show that $p_{k}(E)$ is equal to $(-1)^{k} c_{2 k}(E \otimes \mathbb{C})$.
(c) Prove that if a complex vector bundle has non-zero, odd Chern classes, it cannot be the complexification of a real vector bundle.

4. Pontrjagin numbers

Let M be a $4 k$-manifold for $k \geq 0$. Let f be a polynomial in the variables x_{1}, \ldots, x_{k} and declare that each variable x_{i} has degree $4 i$. Then we say that f is homogeneous of degree $4 k$ if every monomial has total degree $4 k$. For instance,

$$
x_{1}^{3}+x_{2} x_{1}+x_{3}
$$

is a homogeneous polynomial of degree $4 k$ in this convention. If $p_{i} \in$ $H^{4 i}(M)$ are the Pontrjagin classes of M, it makes sense to evaluate f by substituting p_{i} for the variable x_{i}, and one obtains a cohomology class of dimension $4 k$. As an example, the above polynomial evaluates to

$$
p_{1}^{3}+p_{2} p_{1}+p_{3} \in H^{12}(M)
$$

Given f and an orientation on M, integrating over M thus outputs a number

$$
f(p(M))[M]:=\int_{M} f(p(M))
$$

This is called a Pontrjagin number of M.
Let M and M^{\prime} be oriented manifolds. An oriented cobordism from M to M^{\prime} is an oriented manifold W such that $\partial W=M \coprod-M^{\prime}$, where $-M^{\prime}$ is M^{\prime} with the opposite orientation.
(a) Recall that the empty manifold is a manifold of every dimension. When you consider it as a manifold of dimension $4 k$, show that all Pontrjagin numbers of \emptyset vanish.
(b) Show that if there exists an oriented cobordism from M to M^{\prime}, the Pontrjagin number of M associated to a homogeneous polynomial f is equal to the Pontrajagin number of M^{\prime} associated to f. This is commonly stated as: "Oriented cobordisms preserve Pontrajagin numbers."
(c) Show that if M is the boundary of a smooth, orientable $(4 k+1)$ manifold, then its Pontrjagin numbers must vanish.

