
Homework Six

As in the previous homework, a problem given an asterirk (∗) need not
be handed in.

This homework is due in two weeks, so on Monday, October 20th. This
accounts for the length.

1. Integrable and non-integrable distributions

Recall a distribution on N is a choice of smooth subbundle H ⊂ TN .
A distribution is called integrable if for every p ∈ N , there is an immersion
j : W → N such that Tj(TW ) = H|j(W ) and p ∈ W . (Note one may
assume W is an injective immersion—i.e., a submanifold in the sense of
a previous homework—in this definition.) Such a W is called an integral
submanifold for the distribution.

(a) Show that if H is integrable, then Γ(H) is closed under the Lie bracket
of Γ(TN).

The converse is called the Frobenius theorem, which we will even-
tually prove. Note that the Frobenius theorem is a theorem connecting
algebra to geometry: Lie sub-algebras give rise to integrable distribu-
tions.

(b) Let H ⊂ TR3 be the kernel of the differential form dz−ydx. Show that
H is not integrable at the origin using the Frobenius theorem.

(c) Show that H is not integrable without using the Frobenius theorem.
(d) (*) Show that this distribution cannot arise from a connection on the

trivial bundle over R2 = {(x, y)}.

By the way, later we will become more adept at the algebra of differen-
tial forms. As a result, we will see that any H defines an ideal I ⊂ Ω∗(M)
of forms that vanish along H. We will see that Γ(H) ⊂ Γ(TM) is a Lie sub-
algebra if and only if this ideal is closed under the deRham differential—so
this gives a version of the Frobenius theorem. That is, one can test whether
a distribution is integrable by finding certain ideals of commutative rings
(the deRham algebra). This particular passage between commutative and
Lie algebras is a fancy instance of a phenomenon called Koszul duality.
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2. Flat connections on the real line

Let M = R, and E = R be the trivial bundle. Let s1 : M → E be
the constant section assigning p �→ 1. Let σ be an arbitrary section of
T ∗M ⊗ E.

(a) (*) Show that a section of T ∗M⊗E (in this problem) is the same thing
as a section of T ∗M .

(b) Recall from class that the assignment ∇ : s1 �→ σ defines a unique
connection ∇ : Ω0(E) → Ω1(E). For the sake of notation, let us write
σ = gdt. Let s = fs1 be an arbitrary section of E. Write a necessary
and sufficient condition on f (in terms of g) so that ∇s = 0.

(c) Classify all flat connections on the trivial line bundle over M = R.

3. Flat connections on the circle

(a) (*) Show that the cotangent bundle T ∗S1 is trivial.
(b) Classify all flat connections on the trivial line bundle on the circle.
(c) Classify all flat connections on the Mobius line bundle on the circle.

4. The space of connections

Let ∇ be a connection on E → M for an arbitrary smooth bundle E.
Let h : Ω0(E) → Ω1(E) be a map that is C∞(M)-linear. What this means
is that

h(fs) = fh(s)

for any f ∈ C∞(M). Note that no such h is a connection. However,

(a) Show that ∇+ h is a connection, and
(b) Show that every connection on E is obtained from ∇ by adding some

choice of h to it. What you have shown is that the space of all connec-
tions is an affine space modeled on the C∞(M)-module

homC∞(M)−module(Ω
0(E),Ω1(E)).

5. Functoriality for connections

(a) Show that if s1 = s2 on some open set U , then ∇s1 = ∇s2 on U . (Hint:
Bump functions.) This is what justifies us computing connections lo-
cally.

(b) Show that if we have a smooth map f : N → M , and a smooth vector
bundle E → M with a connection ∇, one has an induced connection ∇�

on the pullback bundle f∗E. Show that this is the unique connection
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on f∗E such that the diagram

Ω0(E)

��

∇ �� Ω1(E)

��
Ω0(f∗E)

∇�
�� Ω1(f∗E)

commutes.

6. A non-flat connection

Let M = R2 and E = R be the trivial bundle. Note that the usual
deRham differential d = ddeR is a connection on E. Let s be a section of
E (i.e., a smooth function). We let 1 be the constant section with value 1
in the trivialization.

(a) Show that the connection

∇ : s �→ ds⊗ 1− ydx⊗ s, i.e., (∇(s))(x, y) = ds|(x,y) − s(x, y)ydx|(x,y).

is not flat.
(b) Consider the distribution of R3 given as the kernel of dz − zydx. How

is this distribution related to the connection above?
(c) Show that this distribution is not integrable using Frobenius’s Theorem.

7. (*) A non-flat connection, continued

Given a smooth curve γ : R → M , a section s : R → γ∗E is called
parallel along γ if ∇�(s) = 0. (Here, ∇� is the induced connection on
γ∗E from before.) Given a parallel section s for which s(0) = v0 ∈ Eγ0 ,
we say that vt ∈ Eγt is obtained by parallel transport of v0 along γ if
vt = s(t). Throughout this problem, we will use the non-flat connection on
R = E → M = R2 from the above problem.

(a) Let γ be the horizontal parametrized by γ(t) = (t, y0). Show that a
section of γ∗E ∼= R is parallel if and only if can be identified as an
exponential function t �→ Aey0t.

(b) Let γ be the vertical line parametrized by γ(t) = (x0, t). Show that a
section of γ∗E ∼= R is parallel if and only if it is a constant function.

(c) Show that the parallel transport of some point in the fiber over the
origin to another point (x, y) ∈ R2 depends on the choice of path. You
may use piecewise smooth paths if it makes things easier.

8. (*) Some standard computations

This problem makes sure that we know what’s going on in doing com-
putations with differential forms.
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(a) Consider the differential 1-form

α =
x

x2 + y2
dy −

y

x2 + y2
dx

defined on the manifold M = R2 − {0}. Compute dα ∈ Ω2(M).
(b) Let j : S1 �→ M be the usual inclusion. Show that j∗α cannot be df

for any smooth function f : S1 → R. (Hint: Stokes’s Theorem, or the
Fundamental Theorem of Calculus.)

(c) Let {x1, . . . , xn, y1, . . . , yn} denote a basis for R2n. Show that

ω :=
�

i=1,...,n

dxi ∧ dyi ∈ Ω2(R2n)

is a closed form.
(d) Show that ωn is a nowhere vanishing section of Ω2nT ∗R2n.
(e) Show that ω is an exact form.
(f) Let f : R2n → R be a smooth function. Exhibit conditions on f under

which fω is closed, and under which (fω)n is nowhere vanishing.

9. Some algebra

Definition 1. A commutative differential graded algebra, or cdga, is
a sequence of groups Ak, k ∈ Z, together with two operations

m : Ak
⊗Al

→ Ak+l, (a⊗ b) �→ ab, d : Ak
→ Ak+1

such that the following holds:

(1) ab = (−1)klba. (So A is a graded-commutative ring).
(2) There exists an element 1 ∈ A0 so that 1a = a1 = 1 for all a ∈ Ak.

(So A is unital.)
(3) (ab)c = a(bc). (So m is associative.)
(4) d(ab) = (da)b+(−1)|a|a(db). (So d satisfies the Leibniz rule; i.e.,

d is a derivation.)
(5) d2 = 0.

This amounts to saying that A is a commutative algebra object in the
category of cochain complexes. Our primary example is the deRham alge-
bra of differential forms associated to any manifold M .

Definition 2. A map of cdgas f : A → B is a homomorphism fk :
Ak → Bk for all k ∈ Z, such that

df = fd and f(a1a2) = f(a1)f(a2).

(a) (*) Fix a ring R and let A = R[x1, . . . , xn] be a polynomial ring. Think
of each element xi as living in degree 2, so A0 = R, and A2 is the group
of all homogeneous degree 1 polynomials in the xi. Show that A is a
cdga with zero differential.
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(b) Given any cdga A, let Hk(A) denote the kth cohomology group of A.
Endow H∗(A) with the zero differential d = 0. Show that H∗(A) is a
cdga. This is called the cohomology algebra of the cdga.

(c) Show that a map of cdgas induces a map of cdgas between their coho-
mology algebras.

(d) Show that any smooth map f : M → N induces a map of cdgas

f∗ : Ω∗(N) → Ω∗(M).

(This is without passing to deRham cohomology.) If you prefer, you
may assume that M = Rm and N = Rn.

By the previous problem, you have shown that any smooth map
M → N induces a map on their deRham cohomology algebars,H∗(N) →
H∗(M).
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