Homework Six

As in the previous homework, a problem given an asterirk (*) need not be handed in.

This homework is due in two weeks, so on Monday, October 20th. This accounts for the length.

1. Integrable and non-integrable distributions

Recall a distribution on N is a choice of smooth subbundle $\mathcal{H} \subset TN$. A distribution is called *integrable* if for every $p \in N$, there is an immersion $j: W \to N$ such that $Tj(TW) = \mathcal{H}|_{j(W)}$ and $p \in W$. (Note one may assume W is an injective immersion—i.e., a submanifold in the sense of a previous homework—in this definition.) Such a W is called an *integral* submanifold for the distribution.

(a) Show that if \mathcal{H} is integrable, then $\Gamma(\mathcal{H})$ is closed under the Lie bracket of $\Gamma(TN)$.

The converse is called the *Frobenius theorem*, which we will eventually prove. Note that the Frobenius theorem is a theorem connecting algebra to geometry: Lie sub-algebras give rise to integrable distributions.

- (b) Let $\mathcal{H} \subset T\mathbb{R}^3$ be the kernel of the differential form dz ydx. Show that \mathcal{H} is not integrable at the origin using the Frobenius theorem.
- (c) Show that \mathcal{H} is not integrable without using the Frobenius theorem.
- (d) (*) Show that this distribution cannot arise from a connection on the trivial bundle over $\mathbb{R}^2 = \{(x, y)\}.$

By the way, later we will become more adept at the algebra of differential forms. As a result, we will see that any \mathcal{H} defines an ideal $I \subset \Omega^*(M)$ of forms that vanish along \mathcal{H} . We will see that $\Gamma(\mathcal{H}) \subset \Gamma(TM)$ is a Lie subalgebra if and only if this ideal is closed under the deRham differential—so this gives a version of the Frobenius theorem. That is, one can test whether a distribution is integrable by finding certain ideals of commutative rings (the deRham algebra). This particular passage between commutative and Lie algebras is a fancy instance of a phenomenon called Koszul duality.

2. Flat connections on the real line

Let $M = \mathbb{R}$, and $E = \mathbb{R}$ be the trivial bundle. Let $s_1 : M \to E$ be the constant section assigning $p \mapsto 1$. Let σ be an arbitrary section of $T^*M \otimes E$.

- (a) (*) Show that a section of $T^*M \otimes E$ (in this problem) is the same thing as a section of T^*M .
- (b) Recall from class that the assignment $\nabla : s_1 \mapsto \sigma$ defines a unique connection $\nabla : \Omega^0(E) \to \Omega^1(E)$. For the sake of notation, let us write $\sigma = gdt$. Let $s = fs_1$ be an arbitrary section of E. Write a necessary and sufficient condition on f (in terms of g) so that $\nabla s = 0$.
- (c) Classify all flat connections on the trivial line bundle over $M = \mathbb{R}$.

3. Flat connections on the circle

- (a) (*) Show that the cotangent bundle T^*S^1 is trivial.
- (b) Classify all flat connections on the trivial line bundle on the circle.
- (c) Classify all flat connections on the Mobius line bundle on the circle.

4. The space of connections

Let ∇ be a connection on $E \to M$ for an arbitrary smooth bundle E. Let $h: \Omega^0(E) \to \Omega^1(E)$ be a map that is $C^{\infty}(M)$ -linear. What this means is that

$$h(fs) = fh(s)$$

for any $f \in C^{\infty}(M)$. Note that no such h is a connection. However,

- (a) Show that $\nabla + h$ is a connection, and
- (b) Show that every connection on E is obtained from ∇ by adding some choice of h to it. What you have shown is that the space of all connections is an affine space modeled on the $C^{\infty}(M)$ -module

 $\hom_{C^{\infty}(M)-module}(\Omega^{0}(E), \Omega^{1}(E)).$

5. Functoriality for connections

- (a) Show that if $s_1 = s_2$ on some open set U, then $\nabla s_1 = \nabla s_2$ on U. (Hint: Bump functions.) This is what justifies us computing connections locally.
- (b) Show that if we have a smooth map $f: N \to M$, and a smooth vector bundle $E \to M$ with a connection ∇ , one has an induced connection ∇' on the pullback bundle f^*E . Show that this is the unique connection

on f^*E such that the diagram

$$\begin{array}{c} \Omega^0(E) & \xrightarrow{\nabla} \Omega^1(E) \\ & \downarrow & \downarrow \\ \Omega^0(f^*E) & \xrightarrow{\nabla'} \Omega^1(f^*E) \end{array}$$

commutes.

6. A non-flat connection

Let $M = \mathbb{R}^2$ and $E = \mathbb{R}$ be the trivial bundle. Note that the usual deRham differential $d = d_{deR}$ is a connection on E. Let s be a section of E (i.e., a smooth function). We let 1 be the constant section with value 1 in the trivialization.

- (a) Show that the connection
- $\nabla : s \mapsto ds \otimes 1 y dx \otimes s, \qquad i.e., \qquad (\nabla(s))(x,y) = ds|_{(x,y)} s(x,y)y dx|_{(x,y)}.$ is not flat.
- (b) Consider the distribution of \mathbb{R}^3 given as the kernel of dz zydx. How is this distribution related to the connection above?
- (c) Show that this distribution is not integrable using Frobenius's Theorem.

7. (*) A non-flat connection, continued

Given a smooth curve $\gamma : \mathbb{R} \to M$, a section $s : \mathbb{R} \to \gamma^* E$ is called parallel along γ if $\nabla'(s) = 0$. (Here, ∇' is the induced connection on $\gamma^* E$ from before.) Given a parallel section s for which $s(0) = v_0 \in E_{\gamma_0}$, we say that $v_t \in E_{\gamma_t}$ is obtained by parallel transport of v_0 along γ if $v_t = s(t)$. Throughout this problem, we will use the non-flat connection on $\mathbb{R} = E \to M = \mathbb{R}^2$ from the above problem.

- (a) Let γ be the horizontal parametrized by $\gamma(t) = (t, y_0)$. Show that a section of $\gamma^* E \cong \mathbb{R}$ is parallel if and only if can be identified as an exponential function $t \mapsto A e^{y_0 t}$.
- (b) Let γ be the vertical line parametrized by $\gamma(t) = (x_0, t)$. Show that a section of $\gamma^* E \cong \mathbb{R}$ is parallel if and only if it is a constant function.
- (c) Show that the parallel transport of some point in the fiber over the origin to another point $(x, y) \in \mathbb{R}^2$ depends on the choice of path. You may use piecewise smooth paths if it makes things easier.

8. (*) Some standard computations

This problem makes sure that we know what's going on in doing computations with differential forms. (a) Consider the differential 1-form

$$\alpha = \frac{x}{x^2 + y^2}dy - \frac{y}{x^2 + y^2}dx$$

defined on the manifold $M = \mathbb{R}^2 - \{0\}$. Compute $d\alpha \in \Omega^2(M)$.

- (b) Let $j: S^1 \hookrightarrow M$ be the usual inclusion. Show that $j^*\alpha$ cannot be df for any smooth function $f: S^1 \to \mathbb{R}$. (Hint: Stokes's Theorem, or the Fundamental Theorem of Calculus.)
- (c) Let $\{x_1, \ldots, x_n, y_1, \ldots, y_n\}$ denote a basis for \mathbb{R}^{2n} . Show that

$$\omega := \sum_{i=1,\dots,n} dx_i \wedge dy_i \in \Omega^2(\mathbb{R}^{2n})$$

is a closed form.

- (d) Show that ω^n is a nowhere vanishing section of $\Omega^{2n}T^*\mathbb{R}^{2n}$.
- (e) Show that ω is an exact form.
- (f) Let $f : \mathbb{R}^{2n} \to \mathbb{R}$ be a smooth function. Exhibit conditions on f under which $f\omega$ is closed, and under which $(f\omega)^n$ is nowhere vanishing.

9. Some algebra

DEFINITION 1. A commutative differential graded algebra, or cdga, is a sequence of groups $A^k, k \in \mathbb{Z}$, together with two operations

$$m: A^k \otimes A^l \to A^{k+l}, (a \otimes b) \mapsto ab, \qquad d: A^k \to A^{k+1}$$

such that the following holds:

- (1) $ab = (-1)^{kl}ba$. (So A is a graded-commutative ring).
- (2) There exists an element $1 \in A^0$ so that 1a = a1 = 1 for all $a \in A^k$. (So A is unital.)
- (3) (ab)c = a(bc). (So m is associative.)
- (4) $d(ab) = (da)b + (-1)^{|a|}a(db)$. (So d satisfies the Leibniz rule; i.e., d is a derivation.)
- (5) $d^2 = 0.$

This amounts to saying that A is a *commutative algebra object* in the category of cochain complexes. Our primary example is the deRham algebra of differential forms associated to any manifold M.

DEFINITION 2. A map of cdgas $f : A \to B$ is a homomorphism $f^k : A^k \to B^k$ for all $k \in \mathbb{Z}$, such that

$$df = fd$$
 and $f(a_1a_2) = f(a_1)f(a_2).$

(a) (*) Fix a ring R and let $A = R[x_1, \ldots, x_n]$ be a polynomial ring. Think of each element x_i as living in degree 2, so $A^0 = R$, and A^2 is the group of all homogeneous degree 1 polynomials in the x_i . Show that A is a cdga with zero differential.

- (b) Given any cdga A, let $H^k(A)$ denote the kth cohomology group of A. Endow $H^*(A)$ with the zero differential d = 0. Show that $H^*(A)$ is a cdga. This is called the *cohomology algebra* of the cdga.
- (c) Show that a map of cdgas induces a map of cdgas between their cohomology algebras.
- (d) Show that any smooth map $f: M \to N$ induces a map of cdgas

$$f^*: \Omega^*(N) \to \Omega^*(M).$$

(This is without passing to deRham cohomology.) If you prefer, you may assume that $M = \mathbb{R}^m$ and $N = \mathbb{R}^n$.

By the previous problem, you have shown that any smooth map $M \to N$ induces a map on their deRham cohomology algebras, $H^*(N) \to H^*(M)$.