Homework Four

1. Locally Euclidean v. Hausdorff

For some n, find an example of a topological space which is locally homeomorphic to \mathbb{R}^{n}, but not Hausdorff.

2. Vector Bundles

Note that any vector bundle $\pi: E \rightarrow M$ admits a section called the zero section. That is, since the local trivializations $\pi^{-1}(U) \cong U \times \mathbb{R}^{n}$ are linear on the fibers, they preserve the zeroes of the vector spaces \mathbb{R}^{n}. Hence the $\operatorname{map} x \mapsto(x, 0)$ is well-defined, and defines a section $M \rightarrow E$. In particular, it makes sense to talk about when an arbitrary section $s: M \rightarrow E$ vanishes (i.e., intersects the zero section).
(a) Let M be a smooth manifold, and $L \rightarrow M$ a line bundle. (That is, a vector bundle of rank 1.) Show that L is trivial if and only if L admits a nowhere vanishing section.
(b) Let M be a manifold of dimension n, and let $E \rightarrow M$ be a vector bundle of rank strictly greater than n. Show that E admits a nowhere vanishing section.
(c) Show that if $E \rightarrow M$ is a vector bundle admitting a nowhere vanishing section, E is isomorphic to a direct sum $\mathbb{R} \oplus E^{\prime}$, where \mathbb{R} is the trivial line bundle.

3. Some bundles on the circle

(a) Let $E^{\prime}=[0,1] \times \mathbb{R}$. Define the quotient topological space E by declaring $(0, t) \sim(1,-t)$. This can be made smooth, and the natural map $E \rightarrow$ $S^{1}=[0,1] /(0 \sim 1)$ defines a vector smooth bundle over S^{1} This is called the Mobius line bundle. Show that E is not trivial.
(b) Is $E \oplus E$ trivial?
(c) How about $E \otimes E$?

4. Tangent bundles of spheres

(a) A manifold M is called parallelizable if $T M$ is trivial. Let $M=S^{1}, S^{3}$, or S^{7}. Show that these spheres are parallelizable. It is a deep theorem that these spheres (along with S^{0}) are the only parallelizable ones.
(b) If $M=S^{n}$ for odd n, show that $T M$ admits a nowhere vanishing section. In particular, show that $T M \cong \mathbb{R} \oplus E$ for some rank $n-1$ vector bundle E. Here, \mathbb{R} is the trivial rank 1 vector bundle.
(c) If $M=S^{n}$ where n is 3 modulo 4 , show that $T M$ is isomorphic to $\underline{\mathbb{R}}^{3} \oplus E^{\prime}$ for some bundle E^{\prime}. Here, \mathbb{R}^{3} is the trivial rank 3 bundle.
(d) What can you say about $T S^{n}$ when n is 7 modulo 8 ?

In this problem, it may help to realize that the tangent bundle $T S^{n}$ is isomorphic to the bundle formed by taking all pairs of vectors (x, v) in \mathbb{R}^{n} such that $x \in S^{n}$ and v is tangent to S^{n} at x. (It isn't hard to prove.)

5. Another characterization of cotangent spaces

Let M be a smooth manifold and $p \in M$ a point. Let Germ $_{p}$ be the set of germs of functions at p. That is, an element of Germ_{p} is an equivalence class $[f]$, where $f \in C^{\infty}(M)$. We say $f \sim g$ if for some open with $p \in U$, $\left.f\right|_{U}=\left.g\right|_{U}$. Let m_{p} denote the set of germs of functions that vanish at p. Note this is a two-sided ideal inside the ring Germp.
(a) Show that m_{p} is not finite-dimensional over \mathbb{R}.
(b) Let m_{p}^{2} denote the ideal generated by products of elements in m_{p}. Show that

$$
\left(m_{p} / m_{p}^{2}\right)^{\vee} \cong T_{p} M .
$$

6. Orientability

An n-manifold M is called orientable if the line bundle

$$
\Lambda^{n}\left(T^{*} M\right)
$$

admits a nowhere-vanishing section. Show that $T M$ is an orientable manifold for any smooth M.

