
Math 122 Midterm 2 Fall 2014

Instructions

• Due: Wednesday, Dec 3, by noon (class time).
• You may use your class notes, my class notes, your past homework,

homework solutions, and midterm solutions. But do not ask for
help (or look for answers) on stack exchange, on math overflow,
or on any other online source.

• All collaboration and writing policies in the syllabus apply.
• You may collaborate on Problems 1 - 6. You may not collaborate

on the rest: Problems 7 - 12. The seemingly difficult problems
are loads of fun to solve, so I encourage you to persist.

• Start early. Think deeply. Have fun.

1. Irreducibility

Let F be a field. For any x ∈ F , note that there is a function

F [t]→ F,

called evaluation at x. Explicitly, if f = adt
d + . . . a1t+ a0 is a polynomial,

we send f to

f(x) = adx
d + . . . a1x + a0 ∈ F.

Here, by xd, we mean of course the element of F obtained by multiplying
x with itself d times.

(a) Show that for any x ∈ F , evaluation at x is a ring homomorphism.
(b) Show that f can be factored by a linear polynomial if and only if there

is some x ∈ F for which f(x) = 0. (Hint: Use the division algorithm
and induct on degree.)

Recall that a polynomial f(t) ∈ F [t] is irreducible if the only poly-
nomials dividing f(t) are degree 0 (i.e., are constants) or have degree
equal to f .

(c) If F = C, show that f(t) = t2 + 1 is not irreducible.
(d) If F = R, show that f(t) = t2 + 1 is irreducible. (Hint: If f(t) =

g(t)h(t), what can you say about the degrees of g and h? And what
does that say about solutions to f(t)?)

(e) For each of the primes p = 2, 3, 5, 7, indicate which of the following
polynomials has a solution in Z/pZ. (You’ll need to just compute.)
(a) t2 + 1 (i.e., which of these finite fields has a square root to −1?)
(b) t3 − 2 (i.e., which of these fields has a cube root to 2?)
(c) t2+t+1 (i.e., for which of these fields does this polynomial factor?)
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2. Principal ideal domains

Let R be an integral domain. We call R a principal ideal domain if
every ideal I ⊂ R is equal to (x) for some x ∈ R. That is, every ideal is
generated by a single element.

(a) Show that Z is a principal ideal domain. (We’ve done this in class, so
you can do it, too!)

(b) Let F be a field. Show that F [t] is a principal ideal domain. (Hint:
If I 6= (0), let n be the least degree for which a degree n polynomial
is in I. If p(t) and q(t) are both degree n polynomials, how are they
related? Finally, given any f(t) ∈ I, what happens when you divide
f(t) by p(t) and look at the remainder?)

3. The second isomorphism theorem

Fix a group G. Let S ⊂ G be a subgroup, and N / G be a normal
subgroup.

(a) Let SN be the set of all elements in G of the form sx where s ∈ S and
x ∈ N . Show this is a subgroup of G.

(b) Show that N is a normal subgroup of SN .
(c) Show that S ∩N is a normal subgroup of S.
(d) Exhibit an isomorphism between S/(S ∩ N) and SN/N . (Hint: Does

the equivalence class [s] in the former group define an equivalence class
[sn] in the latter group? Does the n in [sn] matter?)

4. Subgroups descend to quotient groups

Let G be an arbitrary group, and H / G.

(a) Show that there is a bijection between the set of subgroups in G con-
taining H, and the set of subgroups in G/H.

(b) Show that there is a bijection between the set of normal subgroups in
G containing H, and the set of normal subgroups in G/H. (This time,
this isn’t extra credit.)

5. Solvable groups

A group G is called solvable if there exists a finite sequence of subgroups

1 = G0 ⊂ G1 ⊂ . . . ⊂ Gn = G

such that for all i ≥ 0, Gi / Gi+1 and Gi+1/Gi is abelian.

(a) Show that any abelian group is solvable. (If this seems trivial, it’s
because it is.)

(b) Show any group of order pq, where p and q are distinct primes, is
solvable.
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(c) Show that if G is simple and non-abelian, G cannot be solvable.
The following is a great application of the isomorphism theorems,

and of the previous problem.
(d) Show that if G is solvable, so is any subgroup of G.
(e) Show that if G is solvable, and K ⊂ G is normal, then G/K is solvable.

6. GLn(Fq)

Let Fq be a finite field with q elements.

(a) Let V = Fn
q = F⊕n

q be an n-dimensional vector space over Fq. Show
that G = GLn(Fq) acts transitively on V − {0}. (That is, show that
for any pair x, y ∈ V , there is some group element g so that gx = y.)

(b) Prove that G = GLn(Fq) has(
n∏

k=1

(qk − 1)

)(
n−1∏
k=1

qk

)
elements in it. (You can either count intelligently, or apply the orbit-
stabilizer theorem inductively. Either way, use matrices.)

(c) Show that GLn(Fq) has a normal subgroup of index q − 1. (Hint: The
determinant is still a group homomorphism.)

(d) Consider G = GL2(Fq). Assume p is the unique prime number dividing
q. 1 Show that |Sylp(G)| cannot equal 1. (Try thinking about upper-
triangular and lower-triangular matrices, then think about special cases
of them.)

(e) How many elements of order 3 are in GL2(F3)? (You may want to start
by determining the number of Sylow 3-subgroups. Either way, dig in.)

No more collaboration

7. Ring homomorphisms

(a) Show that a composition of two ring homomorphisms is a ring homo-
morphism.

(b) For a ring R, let Mk×k(R) denote the ring of k×k matrices with entries
in R. Specifically, if (aij) is a matrix whose i, jth entry is aij , we define

(aij) + (bij) = (aij + bij), (aij)(bij) = (

k∑
l=l

ailblj).

1One can prove that any finite field has size pk for some prime p. As pointed out

to me by Kevin, it’s not hard—a finite field of characteristic p is a module over Z/pZ,
so is a finite-dimensional vector space over Z/pZ. But how many elements must such a

set have?
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Show that if f : R→ S is a ring homomorphism, then the function

F : Mk×k(R)→Mk×k(S), (aij) 7→ (f(aij))

is a ring homomorphism.
(c) Prove that

f(detA) = det(F (A)).

You may want to start by proving it for k = 1, then perform induction
using the cofactor definition of determinants.

8. Invertible matrices

Let S be a ring. We say x ∈ S is a unit if there is a multiplicative
inverse to x—i.e., an element y ∈ S so that xy = yx = 1S . As an example,
if S is the ring of k× k matrices in some ring R, then a matrix is invertible
if and only if it is a unit.

(a) Determine which of the following matrices is a unit in Mk×k(Z):(
2 5
4 4

) (
2 5
9 4

)  1 0 0
2 3 4
5 6 7


(b) For the primes p = 2, 3, 5, consider the ring homomorphism Z→ Z/pZ

sending a 7→ a. This induces a ring homomorphism Mk×k(Z) →
Mk×k(Z/pZ) by the previous problem. Determine which of the ma-
trices above is sent to a unit for each choice of p = 2, 3, 5.

9. Bases

Let M = Z/nZ.

(a) Show that M admits no basis as a module over Z.
(b) Show that M admits a basis as a module over the ring R = Z/nZ.

10. Ideals are like normal subgroups

Let R be a commutative ring. Show that I ⊂ R is an ideal if and
only if it is the kernel of some ring homomorphism. (The kernel of a ring
homomorphism R→ S is the set of all elements sent to 0 ∈ S.)

11. Characteristic

Let F be a field, and 1 ∈ F the multiplicative identity. The character-
istic of F is the smallest integer n with n ≥ 1 such that

1 + . . . + 1 = 0
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where the summation has n terms in it. For instance, the characteristic of
Z/pZ is p. If F is a field where 1 + . . . + 1 never equals 0 (like R,Q,C) we
say that F has characteristic zero.

Prove that any field (finite or not!) must have either characteristic
zero, or characteristic p for some prime number p.

(By the way, there are in fact infinite fields of finite characteristic.)

12. Solvability of Sn.

(a) For n ≥ 3, show that any cycle of length 3 is in An.
(b) Show by example that An is not abelian for n ≥ 4.
(c) Assume An is simple for n ≥ 5. (This is a theorem we stated, but never

proved.) Explain why Sn is not solvable for any n ≥ 5.
(d) Show that Sn is solvable for n ≤ 3. So all that remains is S4.
(e) Prove that S4 is solvable. (One way: You can exhibit an abelian sub-

group of order 4 in A4.)
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