Math 122 Midterm 2 Fall 2014 Solutions

Common mistakes

i. Groups of order $p q$ are not always cyclic. Look back on Homework Eight. Also consider the dihedral groups $D_{2 n}$ for n an odd prime.
ii. If $H \subset G$ and H is abelian, it is not true that H is necessarily normal. Every subgroup of an abelian G is normal, but a subgroup's "abelianness" does not inform you of its normalcy. Consider for instance the subgroup $H \subset S_{n}$ generated by (123). H is isomorphic to $\mathbb{Z} / 3 \mathbb{Z}$ so is abelian, but is not normal in S_{n} unless $n=3$.
iii. Along these lines: Being normal is not some absolute property of a group. For example, any group H is normal inside itself $-H \triangleleft H$. But if H can be realized as a subgroup of G, it is not necessarily true that $H \triangleleft G$! Likewise, homomorphisms do not "preserve normal subgroups" - i.e., a homomorphism $G_{1} \rightarrow G_{2}$ need not send a normal subgroup of G_{1} to a normal subgroup of G_{2}. This is true, however, in special cases, and also when the homomorphism is a surjection.
iv. If $G_{1} \triangleleft G_{2}$ and $G_{2} \triangleleft G_{3}$, it is not necessarily true that $G_{1} \triangleleft G_{3}$. Consider for instance
$G_{1}=\{1,(12)(34)\}, \quad G_{2}=\{1,(12)(34),(13)(24),(14)(23)\}, \quad G_{3}=A_{4}$.
Then G_{1} is not normal in G_{3}-try conjugating by (123).
v. The Klein four-group is $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. So you shouldn't say that "the" Klein 4 -group is the normal, order 4 subgroup of A_{4}. Rather, there exists a subgroup of A_{4} isomorphic to the Klein 4 -group, and this subgroup happens to be normal in A_{4}.
vi. For a commutative ring R, the notation R^{\times}is not equal to $R-\{0\}$. Though we haven't used this notation much, R^{\times}is the notation for the units of R. So if R isn't a field, $R^{\times} \neq R-\{0\}$.
vii. Some people wrote $G / \operatorname{ker} \phi=\operatorname{image} \phi$. This isn't correct-the two groups are not equal, they are isomorphic. Just as when there is a bijection between two sets, it usually does not mean the two sets are equal. As an example - a set of five bananas is not equal to a set of five apples. But the two sets are in bijection.
viii. In the problem about showing G / K is solvable if G is-if $G_{0} \subset \ldots \subset G_{n}$ is a sequence showing G is solvable, the groups G_{i} / K might not make any sense, because K may not be a subgroup of G_{i} !

1. Irreducibility

Let F be a field. For any $x \in F$, note that there is a function

$$
F[t] \rightarrow F
$$

called evaluation at x. Explicitly, if $f=a_{d} t^{d}+\ldots a_{1} t+a_{0}$ is a polynomial, we send f to

$$
f(x)=a_{d} x^{d}+\ldots a_{1} x+a_{0} \in F .
$$

Here, by x^{d}, we mean of course the element of F obtained by multiplying x with itself d times.
(a) Show that for any $x \in F$, evaluation at x is a ring homomorphism.

If $f(t)=1$, then $f(x)=1$. Further, $(f+g)(x)=\sum\left(a_{i}+b_{i}\right) x^{i}=$ $\sum a_{i} x^{i}+\sum b_{i} x^{i}=f(x)+g(x)$. Finally, $f g(x)=\sum_{i+j=k} a_{i} b_{j} x^{k}=$ $\left(\sum_{i} a_{i} x^{i}\right)\left(\sum_{j} b_{j} x^{j}\right)=f(x) g(x)$.
(b) Show that f can be factored by a linear polynomial if and only if there is some $x \in F$ for which $f(x)=0$. (Hint: Use the division algorithm and induct on degree.)

We showed this in class. See Lecture 33.
Recall that a polynomial $f(t) \in F[t]$ is irreducible if the only polynomials dividing $f(t)$ are degree 0 (i.e., are constants) or have degree equal to f.
(c) If $F=\mathbb{C}$, show that $f(t)=t^{2}+1$ is not irreducible.

The element $x=\sqrt{-1}$ satisfies this polynomial- $f(\sqrt{-1})=-1+$ $1=0$. Hence by above, f is not irreducible.
(d) If $F=\mathbb{R}$, show that $f(t)=t^{2}+1$ is irreducible. (Hint: If $f(t)=$ $g(t) h(t)$, what can you say about the degrees of g and h ? And what does that say about solutions to $f(t)$?)

If f can be factored into non-units, then both g and h in the hint must be degree one polynomials. Hence by (b), there must be some real number such that $x^{2}+1=0$. However, for real numbers, x^{2} is always non-negative, so this is impossible.
(e) For each of the primes $p=2,3,5,7$, indicate which of the following polynomials has a solution in $\mathbb{Z} / p \mathbb{Z}$. (You'll need to just compute.)
(a) $t^{2}+\overline{1}$ (i.e., which of these finite fields has a square root to -1 ?)

We can just compute values of x^{2} in each field:

$x \backslash p$	2	3	5	7
1	1	1	1	1
2	-	1	4	4
3	-	-	4	2
4	-	-	1	2
5	-	-	-	4
6	-	-	-	1
2				

of these, only $p=2$ and $p=5$ has -1 appearing: For instance, $2^{2}=3^{2}=4=-1 \in \mathbb{Z} / 5 \mathbb{Z}$. Explicitly, one can also factor the polynomial as below:

$$
t^{2}+1=(t+1)(t+1)
$$

in $\mathbb{Z} / 2 \mathbb{Z}$, and

$$
t^{2}+1=(t-3)(t-2)
$$

in $\mathbb{Z} / 5 \mathbb{Z}$.
(b) $t^{3}-\overline{2}$ (i.e., which of these fields has a cube root to 2 ?)

We can just compute values of x^{3} in each field:

$x \backslash p$	2	3	5	7
1	1	1	1	1
2	-	2	3	1
3	-	-	2	6
4	-	-	4	1
5	-	-	-	6
6	-	-	-	6

of these, only $p=3$ and $p=5$ has 2 appearing: Namely, $2^{3}=$ $3^{2}=4=-1 \in \mathbb{Z} / 5 \mathbb{Z}$. Also note that $t^{3}-2$ factors in $\mathbb{Z} / 2 \mathbb{Z}$, since $x=0$ is a root. Explicitly, we have the following factorizations:

$$
\begin{gathered}
t^{3}-2=t^{3}=t \cdot t \cdot t \quad \text { in } \mathbb{Z} / 2 \mathbb{Z} \\
t^{3}-2=(t-2)\left(t^{2}+2 t+1\right)=(t+1)^{3} \quad \text { in } \mathbb{Z} / 3 \mathbb{Z} \\
t^{3}-2=(t-3)\left(t^{2}+3 t+4\right) \quad \text { in } \mathbb{Z} / 5 \mathbb{Z}
\end{gathered}
$$

(c) $t^{2}+t+1$ (i.e., for which of these fields does this polynomial factor?) We can just compute values of $x^{2}+x+1$ in each field:

$x \backslash p$	2	3	5	7
1	1	0	3	3
2	-	1	2	0
3	-	-	3	6
4	-	-	1	0
5	-	-	-	3
6	-	-	-	1

of these, only $p=3$ and $p=7$ has 0 appearing. We have explicit factorizations:

$$
\begin{array}{cc}
t^{2}+t+1=(t-1)^{2} & \text { in } \mathbb{Z} / 3 \mathbb{Z} \\
t^{2}+t+1=(t-2)(t-4) & \text { in } \mathbb{Z} / 7 \mathbb{Z}
\end{array}
$$

2. Principal ideal domains

Let R be an integral domain. We call R a principal ideal domain if every ideal $I \subset R$ is equal to (x) for some $x \in R$. That is, every ideal is generated by a single element.
(a) Show that \mathbb{Z} is a principal ideal domain. (We've done this in class, so you can do it, too!)

See class notes. Any subgroup of \mathbb{Z} is equal to $(n)=n \mathbb{Z}$, so in particular, any ideal must also be generated by some single element N.
(b) Let F be a field. Show that $F[t]$ is a principal ideal domain. (Hint: If $I \neq(0)$, let n be the least degree for which a degree n polynomial is in I. If $p(t)$ and $q(t)$ are both degree n polynomials, how are they related? Finally, given any $f(t) \in I$, what happens when you divide $f(t)$ by $p(t)$ and look at the remainder?)

Following the hint: Let n be the smallest degree among non-zero elements in I. Let $p(t)$ be a polynomial in I of degree n. If you divide any $f(t) \in I$ by $p(t)$, the division algorithm tells us that we end up with polynomial of degree less than n-but then we have that

$$
f(t)=p(t) \cdot g(t)+r(t), \quad \operatorname{deg} r(t)<n
$$

while

$$
r(t)=f(t)-p(t) g(t)
$$

must be in I by definition of ideal. This means that $r(t)$ must be zero, or that every polynomial $f(t) \in I$ is divisible by p. Hence $I=$ $(p(t))$. (The hint about $p(t)$ and $q(t)$ to be equal-degree polynomials was unnecessary.)

3. The second isomorphism theorem

Fix a group G. Let $S \subset G$ be a subgroup, and $N \triangleleft G$ be a normal subgroup.
(a) Let $S N$ be the set of all elements in G of the form $s x$ where $s \in S$ and $x \in N$. Show this is a subgroup of G.

Given $s_{1}, s_{2} \in S$ and $x_{1}, x_{2} \in N$, we have that

$$
s_{1} x_{1} s_{2} x_{2}=s_{1} s_{2} s_{2}^{-1} x_{1} s_{2} x_{2}=s_{1} s_{2} x^{\prime} x_{2}
$$

for some $x^{\prime} \in N$ (since N is normal). And $s_{1} s_{2} \in S$ and $x^{\prime} x_{2} \in N$ since both are closed under multiplication. The identity is in $S N$ since $1 \in S, N$ and $1 \cdot 1=1$. Finally, $S N$ contains inverses because

$$
x^{-1} s^{-1}=\left(s^{-1} x^{\prime} s\right) s^{-1}=s^{-1} x^{\prime}
$$

where $x^{\prime} \in N$ is the element such that $x^{\prime}=s x^{-1} s^{-1}$.
(b) Show that N is a normal subgroup of $S N$.

We know $g x g^{-1} \in N$ for every $g \in G$ and $x \in N$. Since $S N \subset G$, we in particular have that $g x g^{-1} \in N$ for any $g \in S N$.
(c) Show that $S \cap N$ is a normal subgroup of S.

If $x \in S \cap N$, then for all $s \in S$, we know $s x s^{-1} \in N$ since N is normal in G. On the other hand, S is closed under multiplication, so $s x s^{-1} \in S$ as well. This shows $s x s^{-1} \in N \cap S$.
(d) Exhibit an isomorphism between $S /(S \cap N)$ and $S N / N$. (Hint: Does the equivalence class $[s]$ in the former group define an equivalence class [sn] in the latter group? Does the n in [sn] matter?)

A solution without using the hint: Consider the composition of homomorphisms

$$
S \rightarrow S N \rightarrow S N / N
$$

where the latter is the quotient map, and the former is simply the inclusion (note that $S \subset S N$). This composition is a surjection since for any $n \in N$, the element $[s n] \in S N / N$ is equal to the element $[s] \in S N / N$. Its kernel is the set of those elements s which are in N-i.e., $S \cap N$. So we are finished by the first isomorphism theorem.

Alternative proof: This is an explicit construction of the inverse map-illustrated here in case you wanted something more hands-on. Given $[s n] \in S N / N$, consider $[s] \in S /(S \cap N)$.

- We claim the assignment $\phi:[s n] \mapsto[s]$ is well-defined. For if $s n=s^{\prime} n^{\prime} x$ with $x \in N$, then

$$
s=s^{\prime}\left(n^{\prime} x n^{-1}\right)
$$

We must show that the element $n^{\prime} x n^{-1}$ is in $S \cap N$. Well, we see it must be in S by multiplying both sides on the left by $s^{\prime-1}$. We
know that it's in N since the elements n^{\prime}, x, n^{-1} are all in N and N is closed under multiplication.

- Now we show it is a group homomorphism:

$$
\begin{aligned}
\phi\left(\left[s_{1} n_{1}\right]\left[s_{2} n_{2}\right]\right)=\phi\left(\left[s_{1} n_{1} s_{2} n_{2}\right)\right] & =\phi\left(\left[s_{1} s_{2}\left(s_{2}^{-1} n_{1} s_{2} n_{2}\right)\right]\right) \\
& =\phi\left(\left[s_{1} s_{2}\left(n^{\prime} n_{2}\right)\right]\right) \\
& =\left[s_{1} s_{2}\right] \\
& =\left[s_{1}\right]\left[s_{2}\right] \\
& =\phi\left(\left[s_{1} n_{1}\right]\right) \phi\left(\left[s_{2} n_{2}\right]\right) .
\end{aligned}
$$

- To show it is an injection, we must show that the kernel is trivial. Well, if $\phi([s n])=[x]$ for $x \in S \cap N$, then [sn] has a representative of the form $x n^{\prime}$; but $x \in X \cap N, n^{\prime} \in N$ implies $x n^{\prime} \in N$ by the fact that N is closed under multiplication, so $[s n]=\left[s n^{\prime}\right]=1 \in S N / N$.
- To show surjection, note that for any $s \in S$, we have that $s=$ $s 1_{G} \in S N$. So $\phi\left(\left[s 1_{G}\right]\right)=\phi(s)$.

4. Subgroups descend to quotient groups

Let G be an arbitrary group, and $H \triangleleft G$.
(a) Show that there is a bijection between the set of subgroups in G containing H, and the set of subgroups in G / H.

Let $p: G \rightarrow G / H$ be the group homomorphism given by sending $g \mapsto[g]$.

- Given a subgroup $K \subset G$, note the composition of group homomorphisms

$$
K \hookrightarrow G \rightarrow G / H
$$

Since the image of any group homomorphism is a subgroup, this shows that $p(K)$ is a subgroup of G / H. So we have a function \{subgroups of $G\} \rightarrow\{$ subgroups of $G / H\}$ given by sending $K \mapsto$ $p(K)$.

- We show it is a surjection: Given $K^{\prime} \subset G / H$, consider the preimage $p^{-1}\left(K^{\prime}\right) \subset G$. This is a subgroup of G since if $p(x), p(y) \in$ K^{\prime}, then $p(x y)=p(x) p(y) \in K^{\prime}$ (because K^{\prime} is closed under multiplication).
- Now it suffices to show that $p^{-1}(p(K))=K$ for all subgroups $K \subset G$. Obviously $K \subset p^{-1}(p(K))$. To show the other inclusion, let $x \in p^{-1}(p(K))$. We know by definition of $p(K)$ that there is some $y \in K$ for which $p(x)=p(y)$. Then $p\left(x y^{-1}\right)=1_{G / H}$, so $x y^{-1} \in H$. Since K contains $H, x y^{-1} \in K$, hence $x \in K$.
(b) Show that there is a bijection between the set of normal subgroups in G containing H, and the set of normal subgroups in G / H. (This time, this isn't extra credit.)
- We show that if K is normal, then $p(K)$ is normal. (This proves we have a function
\{normal subgroups of $G\} \rightarrow\{$ normal subgroups of $G / H\}$.)
Well, if $[k] \in p(K)$, then $[g][k][g]^{-1}=\left[g k g^{-1}\right]=\left[k^{\prime}\right]$ for some $k^{\prime} \in K$ since K is normal in G. So $p(K) \subset G / H$ is normal. (Note we are using the fact that $G \rightarrow G / H$ is a surjection here otherwise, we wouldn't know that every element of G / H is in the image of $p(G)$.)
- Surjectivity: We show that if $p(K)$ is normal, then $K=p^{-1}(p(K))$ is normal (this equality follows from part (c) above). If $k \in K$ and $g \in G$, we have that $\left[g k g^{-1}\right]=[g][k]\left[g^{-1}\right]=\left[k^{\prime}\right]$ for some $\left[k^{\prime}\right] \in p(K)$-i.e., for some $k^{\prime} \in K$. So $g k g^{-1} \in p^{-1}(p(K))=K$.
- We know that this assignment is an injection by part (c) from the previous problem's solution. So we are finished.

5. Solvable groups

A group G is called solvable if there exists a finite sequence of subgroups

$$
1=G_{0} \subset G_{1} \subset \ldots \subset G_{n}=G
$$

such that for all $i \geq 0, G_{i} \triangleleft G_{i+1}$ and G_{i+1} / G_{i} is abelian.
(a) Show that any abelian group is solvable. (If this seems trivial, it's because it is.)

If G is abelian, take $G_{0}=1$ and $G_{n}=G_{1}=G$. This shows G is solvable.
(b) Show any group of order $p q$, where p and q are distinct primes, is solvable.

Assume $p<q$. We know any such group G has a normal subgroup H of order q-hence, a normal subgroup isomorphic to $\mathbb{Z} / q \mathbb{Z}$ (since any group of prime order is cyclic). We know the existence of such a normal subgroup by applying the Sylow theorems - see Lecture 22-or by $5(\mathrm{~b})$ of Homework Five. This guarantees that we have a short exact sequence

$$
1 \rightarrow H \rightarrow G \rightarrow \mathbb{Z} / p \mathbb{Z} \rightarrow 1
$$

(Note that G / H must have order $|G| /\left|H_{q}\right|=p q / q=p$, so we know it has to be isomorphic to $\mathbb{Z} / p \mathbb{Z}$.) So take

$$
1=G_{0} \subset G_{1}=H \subset G_{2}=G
$$

Then $G_{1} / G_{0} \cong H \cong \mathbb{Z} / q \mathbb{Z}$ is abelian, and $G_{2} / G_{1} \cong \mathbb{Z} / p \mathbb{Z}$ is, too.
(c) Show that if G is simple and non-abelian, G cannot be solvable.

Since G is simple, it has no normal subgroups aside from G and $\{1\}$. So if $G_{i-1} \triangleleft G_{i}$ with $G_{i}=G$ and $G_{i-1} \neq G_{i}$, we must have that $G_{i-1}=\{1\}$. But then $G_{i} / G_{i-1} \cong G$ is not abelian, so G is not solvable.

The following is a great application of the isomorphism theorems, and of the previous problem.
(d) Show that if G is solvable, so is any subgroup of G.

Let $S \subset G$ be a subgroup. If G is solvable, there is some sequence of subgroups

$$
1=G_{0} \subset G_{1} \subset \ldots \subset G_{n}=G
$$

such that for all $i \geq 0, G_{i} \triangleleft G_{i+1}$ and G_{i+1} / G_{i} is abelian. So consider the sequence

$$
1=S_{0} \subset S_{1} \subset \ldots \subset S_{n}=S, \quad S_{i}=S \cap G_{i}
$$

- We know $S_{i+1} \subset G_{i+1}$ is a subgroup, and $G_{i} \triangleleft G_{i+1}$, so by 3 (c) of this midterm, we conclude that $S_{i+1} \cap G_{i}=S_{i}$ is normal in S_{i+1}.
- So we must now show that S_{i+1} / S_{i} is abelian. Consider the composition

$$
S_{i+1} \hookrightarrow G_{i+1} \rightarrow G_{i+1} / G_{i}
$$

which we call ϕ. (The first homomorphism is the inclusion, while the second is the quotient homomoprhism.) By definition of the quotient, the kernel of ϕ is the set of all elements in S_{i+1} that are also in G_{i}-that is, the kernel is S_{i}. Hence S_{i+1} / S_{i} is isomorphic to the image of ϕ by the first isomorphism theorem. But any subgroup of any abelian group is abelian, and the image of ϕ is a subgroup of G_{i+1} / G_{i} - which is abelian by assumption.
(e) Show that if G is solvable, and $K \subset G$ is normal, then G / K is solvable. Let $p: G \rightarrow G / K$ be the quotient homomorphism. Since G is solvable, we can find a sequence of subgroups

$$
1=G_{0} \subset G_{1} \subset \ldots \subset G_{n}=G
$$

such that for all $i \geq 0, G_{i} \triangleleft G_{i+1}$ and G_{i+1} / G_{i} is abelian. Consider the sequence

$$
1=H_{0} / K \subset H_{1} / K \subset \ldots \subset H_{n} / K=G / K, \quad H_{i}=G_{i} K
$$

We claim this sequence satisfies the properties necessary to show that G / K is solvable. Note that since K is normal in G and $G_{i} \triangleleft G_{i+1}$, we see that $H_{i} \triangleleft H_{i+1}$. (Explicitly: If $X \in G_{i+1}$ and $Y \in K$, with $x \in G_{i}, y \in K$, we have

$$
\begin{aligned}
(X Y) x y(X Y)^{-1} & =X Y x y Y^{-1} X^{-1} \\
& =X x x^{-1} Y x y Y^{-1} X^{-1} \\
& =X x Y^{\prime} y Y^{-1} X^{-1} \\
& =X x X^{-1} X Y^{\prime} y Y^{-1} X^{-1} \\
& =x^{\prime} X\left(Y^{\prime} y Y^{-1}\right) X^{-1} \\
& =x^{\prime} y^{\prime} .
\end{aligned}
$$

When we replace Y by Y^{\prime}, or x by x^{\prime}, we are using the normalcy of the subgroup containing Y, or x.) So by $4(\mathrm{~b})$, we know that $H_{i} / K \triangleleft$ H_{i+1} / K. By the third isomorphism theorem, we know

$$
\left(H_{i+1} / K\right) /\left(H_{i} / K\right) \cong H_{i+1} / H_{i}
$$

but this latter group is $G_{i+1} K / G_{i} K$. Setting $S=G_{i+1}$ and $N=$ $G_{i} K$ (which is normal in $G_{i+1} K$), note that $G_{i+1} K=S N$. (This is because $G_{i} \subset G_{i+1}$.) So the second isomorphism theorem gives us the isomorphism in the following line:

$$
G_{i+1} K / G_{i} K=S N / N \cong S /(S \cap N)=G_{i+1} /\left(G_{i+1} \cap G_{i} K\right)
$$

But since $G_{i} \subset\left(G_{i+1} \cap G_{i} K\right)$, this last group receives a surjective homomorphism

$$
G_{i+1} / G_{i} \rightarrow G_{i+1} /\left(G_{i+1} \cap G_{i} K\right)
$$

Any group receiving a surjective homomorphism from an abelian group must be an abelian group.

6. $G L_{n}\left(\mathbb{F}_{q}\right)$

Let \mathbb{F}_{q} be a finite field with q elements.
(a) Let $V=\mathbb{F}_{q}^{n}=\mathbb{F}_{q}^{\oplus n}$ be an n-dimensional vector space over \mathbb{F}_{q}. Show that $G=G L_{n}\left(\mathbb{F}_{q}\right)$ acts transitively on $V-\{0\}$. (That is, show that for any pair $x, y \in V$, there is some group element g so that $g x=y$.)

Fix x. If we can show that for all y, there exists g so that $g x=y$, we're finished. For given another element x^{\prime}, we are guaranteed an element h so that $h x^{\prime}=x$. Then

$$
(g h) x^{\prime}=g\left(h x^{\prime}\right)=g x=y
$$

So let x be the standard column vector

$$
\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

If y is any non-zero vector, note that it alone forms a linearly independent set. But any linearly independent collection of vectors can be completed to a basis (29.18 from Lecture 29) - so let $y_{1}, y_{2}, \ldots, y_{n}$ be some basis where $y_{1}=y$. Then the matrix g whose i th column is y_{i} is invertible. (Page 3, Lecture 36.) Moreover, by definition of matrix multiplication, $g x=y_{1}=y$.
--- -For an alternative proof: If y is a column vector whose top entry is $y_{1} \neq 0$, then the matrix g whose first column is given by y, and is otherwise a diagonal matrix with 1 along the diagonal:

$$
g=\left[\begin{array}{ccccc}
y_{1} & 0 & 0 & \ldots & 0 \\
y_{2} & 1 & 0 & \ldots & 0 \\
y_{3} & 0 & 1 & \ldots & 0 \\
\vdots & \ldots & \ldots & \ldots & \vdots \\
y_{n} & 0 & 0 & \ldots & 1
\end{array}\right]
$$

This is invertible since its determinant is $y_{1} \neq 0$, and satisfies $g x=y$. On the other hand, if $y_{1}=0$, there is some entry of y with $y_{i} \neq 0$ since $y \neq 0$. In this case, let g^{\prime} be the matrix whose i th column is y, and which is otherwise a diagonal matrix with 1 along the diagonal. This is invertible because its determinant is $y_{i} \neq 0$. Also consider the matrix h which swaps the i th standard basis vector with the 1st, and leaves all other standard basis vectors intact. (This is the matrix corresponding to the permutation (1i).) Then we have that $(g h) x=y$.
-- - For another proof: Some people wanted to show that if x_{i} form a basis and y_{i} form a basis, there is some invertible transformation A
taking $x_{i} \mapsto y_{i}$. (This is overkill, but yields the result we need: Given x and y, complete each of them to a basis, and use the matrix A.) So let's prove the claim. Well, by definition, a basis x_{1}, \ldots, x_{n} determines an \mathbb{F}-module isomorphism

$$
T_{x}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}, \quad e_{i} \mapsto x_{i}
$$

where e_{i} are the standard basis vectors. Likewise, the basis y_{1}, \ldots, y_{n} determines an \mathbb{F}-module isomorphism

$$
T_{y}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}, \quad e_{i} \mapsto y_{i}
$$

You can check that the inverse of an \mathbb{F}-module homomorphism is again an \mathbb{F}-module homomorphism, and that the composition of invertible \mathbb{F}-module homomorphisms is again invertible. So consider

$$
A=T_{y} \circ\left(T_{x}\right)^{-1}
$$

This is an invertible transformation that takes y_{i} to x_{i} by definition.
(b) Prove that $G=G L_{n}\left(\mathbb{F}_{q}\right)$ has

$$
\left(\prod_{k=1}^{n}\left(q^{k}-1\right)\right)\left(\prod_{k=1}^{n-1} q^{k}\right)
$$

elements in it. (You can either count intelligently, or apply the orbitstabilizer theorem inductively. Either way, use matrices.)

First note that if $n=1$, we have that $G L_{1}\left(\mathbb{F}_{q}\right)$ is the set of invertible 1×1 matrices-that is, the set of all invertible elements in \mathbb{F}_{q}. Since \mathbb{F}_{q} is a field, this means that $\left|G L_{1}\left(\mathbb{F}_{q}\right)\right|=q-1$.
Now: Let $x=e_{1}$ be the standard basis vector with 1 in the first entry and 0 elsewhere. The stabilizer of x is the set of all matrices g for which $g x=x$-that is, the set of all matrices whose first column is given by e_{1}. (This is because $g e_{1}$ always equals the first column of g-if you're not sure why, try writing it out.) How many such invertible matrices are there? Well, writing

$$
g=\left[\begin{array}{cc}
1 & -\vec{u}- \\
0 & A
\end{array}\right]
$$

where \vec{u} is some row vector with $n-1$ entries, and A is a $(n-1) \times(n-1)$ matrix, we see that $\operatorname{det} g=\operatorname{det} A$. So g is invertible if and only if A is, while the entries of \vec{u} have no effect on whether g is invertible. By the orbit stabilizer theorem,

$$
\left|G L_{n}\left(\mathbb{F}_{q}\right)=\left|\mathcal{O}_{x}\right| \cdot\right| \operatorname{Stabilizer}(x) \mid
$$

By above, the orbit of x is all of $\mathbb{F}_{q}^{n}-\{0\}$-but \mathbb{F}_{q}^{n} has q^{n} elements in it, so removing $\{0\}$ yields an orbit with size $q^{n}-1$. On the other hand, an element of the stabilizer is determined uniquely by a choice
of A and of \vec{u}-there are $\left|G L_{n-1}\left(\mathbb{F}_{q}\right)\right|$ choices for A, and q^{n-1} choices for \vec{u}. Thus we have that

$$
\left|G L_{n}\left(\mathbb{F}_{q}\right)\right|=\left(q^{n}-1\right) \cdot\left(q^{n-1}\right)\left(\left|G L_{n-1}\left(\mathbb{F}_{q}\right)\right|\right)
$$

Now you can check that the formula holds as claimed, by induction.
(c) Show that $G L_{n}\left(\mathbb{F}_{q}\right)$ has a normal subgroup of index $q-1$. (Hint: The determinant is still a group homomorphism.)

The group homomorphism $G L_{n}\left(\mathbb{F}_{q}\right) \rightarrow\left(\mathbb{F}_{q}-\{0\}\right)$ is a surjection. (For instance, take the diagonal matrix with diagonal entries given by 1 and by a single appearance of a. This has determinant a.) Hence the index of its kernel is given by the size of the target group, which is $q-1$.
(d) Consider $G=G L_{2}\left(\mathbb{F}_{q}\right)$. Assume p is the unique prime number dividing q. ${ }^{1}$ Show that $\left|\operatorname{Syl}_{p}(G)\right|$ cannot equal 1. (Try thinking about uppertriangular and lower-triangular matrices, then think about special cases of them.)

The group $G L_{2}\left(\mathbb{F}_{q}\right)$ has size

$$
\left(q^{2}-1\right)(q-1) q
$$

according to the previous problem. So any subgroup of size q is a Sylow p-subgroup. (If q is divisible by only p, then no number of the form $q^{k}-1$ is divisible by p.) We claim that the set of all upper-triangular matrices with 1 along the diagonal, and the set of all lower-triangular matrices with 1 along the diagonal, each form a subgroup of order q thus $\operatorname{Syl}_{p}\left(\mathbb{F}_{q}\right)$ has more than one element.
-- - Note that the size of each set is obviously q. The determinant of an element in either of these sets is 1 , and the identity matrix is in both sets, so we just need to prove that both are closed under multiplication:

$$
\left[\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & a+b \\
0 & 1
\end{array}\right]
$$

The proof for the lower-triangular case is identical; just take the transpose of each matrix.

- - - By the way, you can show that for any n, the upper-triangular matrices with 1 along the diagonal constitute a q-Sylow subgroup of $G L_{n}\left(\mathbb{F}_{q}\right)$.
---- Another proof, even without producing a Sylow subgroup: Note that the sizes of the set of upper-triangular and lower-triangular matrices are divisible by q, so these must contain p-Sylow subgroups, H and

[^0]K. But the intersection of the upper-triangular and lower-triangular matrices are the diagonal matrices, of which there are $(q-1)^{n}$ (a number not divisible by q). Hence the p-Sylow subgroups contained in H and K must be distinct.
(e) How many elements of order 3 are in $G L_{2}\left(\mathbb{F}_{3}\right)$? (You may want to start by determining the number of Sylow 3 -subgroups. Either way, dig in.)

Note that the 3 -Sylow subgroups of $G L_{2}\left(\mathbb{F}_{3}\right)$ are given by subgroups of order 3. Note also that if two subgroups of order 3 have an intersection that contains more than the identity, then the two subgroups must be equal (you can check this). Moreover, for each distinct 3 -Sylow subgroup H, the generator $x \in H$ and its square, x^{2}, represent distinct elements of order 3. Conversely, any element of order 3 determines a 3 -Sylow subgroup by looking at the subgroup it generates. Hence the number of elements of order 3 is given by $2 \cdot\left|\operatorname{Syl}_{3}\left(G L_{2}\left(\mathbb{F}_{3}\right)\right)\right|$. --- By (d), we know that $s:=\left|\operatorname{Syl}_{3}\left(G L_{2}\left(\mathbb{F}_{3}\right)\right)\right| \geq 2$. By the Sylow theorems, the number s must divide

$$
\left(q^{2}-1\right)(q-1)=8 \cdot 2=16
$$

and must equal 1 modulo 3 . This leaves the options of $s=4$ or $s=16$. Claim: $s=16$ is impossible. Note that then we would have $2 \cdot 16=32$ elements of order 3. And the Sylow Theorem guarantees that we have at least one group of order 16-the 2-Sylow subgroup. Since $32+16=$ $48=\left|G L_{2}\left(\mathbb{F}_{3}\right)\right|$, this implies there can be no elements of order other than 3 (those elements in a subgroup of order 3), or some power of 2 (those elements in the Sylow 2-subgroup). But there is in fact an element of order 6 in $G L_{2}\left(\mathbb{F}_{3}\right)$, given by

$$
\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right]
$$

To see this, note

$$
\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right]^{2}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

while

$$
\left[\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right]^{n}=\left[\begin{array}{cc}
1 & a n \\
0 & 1
\end{array}\right]
$$

in general. So $s=16$ leads to a contradiction, and we conclude that $s=4$. this means that there are $2 \cdot 4=8$ elements of order 3 .
-- - Another proof that $s=16$ is impossible: Any element of order 3 must have determinant 1 -after all, $(\operatorname{det} g)^{3}=\operatorname{det} g^{3}=\operatorname{det} I=1$, and the only cube root of 1 in \mathbb{F}_{3} is 1 . But the kernel of the determinant has $\left|G L_{2}\left(\mathbb{F}_{3}\right)\right| /\left|\mathbb{F}_{3}=\{0\}\right|=48 / 2=24$ elements in it, so it couldn't contain 32 elements.

- - - Yet another proof that $s=16$ is impossible: From the proof of the Sylow theorems, we know that $\left[G L_{2}\left(\mathbb{F}_{3}\right): N(H)\right]=s$, where $N(H)$ is the normalizer of the Sylow 3-subgroup H. But the elements

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right], \quad\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

all normalize the 3-Sylow subgroup H of upper triangular matrices with 1 along the diagonal. Hence $|N(H)| \geq 4$, and s must be less than 16 - Another proof: Let K be the kernel of the determinant map. It's a normal subgroup of index 2 , so of order 24 . By Sylow's theorems, you can see that K must contain either 1 or 4 subgroups of order 3 (check this yourself). But the upper and lower-triangular matrices with 1 along the diagonal are both subgroups of K, so there must be 4 subgroups of order 3 in K. Since any 3-Sylow subgroup of $G L_{2}\left(\mathbb{F}_{q}\right)$ must be conjugate by Sylow's theorems, they must all be contained in K since K is closed under conjugation. So these 4 subgroups in K are also all the 3-Sylow subgroups of $G L_{2}\left(\mathbb{F}_{q}\right)$, and we have that $s=4$.

No more collaboration

7. Ring homomorphisms

(a) Show that a composition of two ring homomorphisms is a ring homomorphism.

Let $f: R \rightarrow S$ and $g: S \rightarrow T$ be ring homomorphisms. We know the composition of two group homomorphisms is a group homomorphism, we know that $g \circ f$ is a group homomorphism under addition. Thus we need only check that $g \circ f\left(r_{1} r_{2}\right)=\left(g \circ f\left(r_{1}\right)\right)\left(g \circ f\left(r_{2}\right)\right)$, and that $g \circ f\left(1_{R}\right)=1_{T}$. The first equality follows because

$$
g \circ f\left(r_{1} r_{2}\right)=g\left(f\left(r_{1}\right) f\left(r_{2}\right)\right)=g\left(f\left(r_{1}\right)\right) g\left(f\left(r_{2}\right)\right)
$$

The last follows because $g f\left(1_{R}\right)=g\left(1_{S}\right)=1_{T}$.
(b) For a ring R, let $M_{k \times k}(R)$ denote the ring of $k \times k$ matrices with entries in R. Specifically, if $\left(a_{i j}\right)$ is a matrix whose i, j th entry is $a_{i j}$, we define

$$
\left(a_{i j}\right)+\left(b_{i j}\right)=\left(a_{i j}+b_{i j}\right), \quad\left(a_{i j}\right)\left(b_{i j}\right)=\left(\sum_{l=l}^{k} a_{i l} b_{l j}\right)
$$

Show that if $f: R \rightarrow S$ is a ring homomorphism, then the function

$$
F: M_{k \times k}(R) \rightarrow M_{k \times k}(S), \quad\left(a_{i j}\right) \mapsto\left(f\left(a_{i j}\right)\right)
$$

is a ring homomorphism.
To show that F is a group homomorphism with respect to addition, let $a_{i j}$ and $b i j$ be the i, j th entries of matrices A, B having entries in R. Then

$$
F(A+B)_{i j}=f\left(a_{i j}+b_{i j}\right)=f\left(a_{i j}\right)+f\left(b_{i j}\right)=(F(A)+F(B))_{i j}
$$

Since the i, j th entries of both matrices agree, we have that $F(A+B)=$ $F(A)+F(B)$. To show that the multiplicative identity is mapped to the multiplicative identity, note that the identity of the ring of $k \times k$ matrices is given by the diagonal matrix with diagonal entries 1_{R} and 1_{S}, respectively. But since f is a ring homomorphism, F sends the identity of $M_{k \times k}(R)$ to that of $M_{k \times k}(S)$. Finally, we must show that F respects multiplication. To see this, note

$$
F(A B)_{i j}=f\left(\sum_{l=1}^{k} a_{i l} b_{l j}\right)=\sum_{l=1}^{k} f\left(a_{i l}\right) f\left(b_{l j}\right)=\sum_{l=1}^{k} F(A)_{i l} F(B)_{l j}=(F(A) F(B))_{i j}
$$

(c) Prove that

$$
f(\operatorname{det} A)=\operatorname{det}(F(A))
$$

You may want to start by proving it for $k=1$, then perform induction using the cofactor definition of determinants.

This is true for $k=1$, since a 1×1 matrix A is the data of choice of an element $a \in R$, and its determinant is equal to a. Hence

$$
f(\operatorname{det} A)=f(a)=\operatorname{det} F(A)
$$

By induction, assume the equality holds for matrices of dimension \leq $k-1$. We have that

$$
f(\operatorname{det} A)=f\left(\sum_{i=1}^{k}(-1)^{i+1} a_{0 i} \operatorname{det} C_{0 i}\right)
$$

where $C_{0 i}$ is the matrix obtained by deleting the 0 th row and i th column of A. Since f is a ring homomorphism, we have that this in turn equals

$$
\sum_{i=1}^{k}(-1)^{i+1} f\left(a_{0 i}\right) f\left(\operatorname{det} C_{0 i}\right)=\sum_{i=1}^{k}(-1)^{i+1} F(A)_{0 i} \operatorname{det} F\left(C_{0 i}\right)
$$

Noting that $F\left(C_{0 i}\right)$ is the cofactor matrix of $F(A)$ given by deleting the 0 th row and i th column, we are finished.

8. Invertible matrices

Let S be a ring. We say $x \in S$ is a unit if there is a multiplicative inverse to x-i.e., an element $y \in S$ so that $x y=y x=1_{S}$. As an example, if S is the ring of $k \times k$ matrices in some ring R, then a matrix is invertible if and only if it is a unit.
(a) Determine which of the following matrices is a unit in $M_{k \times k}(\mathbb{Z})$:

$$
\left(\begin{array}{ll}
2 & 5 \\
4 & 4
\end{array}\right) \quad\left(\begin{array}{ll}
2 & 5 \\
9 & 4
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 3 & 4 \\
5 & 6 & 7
\end{array}\right)
$$

None of them. A matrix with coefficients in R is a unit if and only if its determinant is a unit in R. But the determinant of the above three matrices are

$$
8-20=12, \quad 8-45=-37, \quad 21-24=3
$$

respectively. However, the only units in \mathbb{Z} are ± 1.
(b) For the primes $p=2,3,5$, consider the ring homomorphism $\mathbb{Z} \rightarrow \mathbb{Z} / p \mathbb{Z}$ sending $a \mapsto \bar{a}$. This induces a ring homomorphism $M_{k \times k}(\mathbb{Z}) \rightarrow$ $M_{k \times k}(\mathbb{Z} / p \mathbb{Z})$ by the previous problem. Determine which of the matrices above is sent to a unit for each choice of $p=2,3,5$.

Modulo p, the integer determinants $12,-37,3$ above are given respectively by

0,	1,	1	$(\bmod 2)$
0,	2,	0	$(\bmod 3)$
2,	3,	3	$(\bmod 5)$.

Since $\mathbb{Z} / p \mathbb{Z}$ is a field, the invertible matrices are those who determinants are non-zero, (since, in a field, any non-zero element is a unit).

9. Bases

Let $M=\mathbb{Z} / n \mathbb{Z}$.
(a) Show that M admits no basis as a module over \mathbb{Z}.

The easiest proof: Any basis induces an isomorphism $\mathbb{Z}^{k} \rightarrow M$. But M is finite, while \mathbb{Z}^{k} is finite if and only if $k=0$.

- - - A more hands-on proof: For any element $x \in M$, we have that $n x=0 \in M$. Hence M does not admit any non-empty sets of linearly independent elements, hence admits no basis.
(b) Show that M admits a basis as a module over the ring $R=\mathbb{Z} / n \mathbb{Z}$.

Let $x=\overline{1}$. This is a spanning set because for any $\bar{j} \in M$, we know that $\bar{j}=\bar{j} \cdot x$. It is linearly independent because $\bar{a} x=\overline{0}$ in $\mathbb{Z} / n \mathbb{Z}$ means that $a \cdot 1$ is a multiple of n. But this means a itself must be a multiple of n, hence $\bar{a}=\overline{0} \in R$.

10. Ideals are like normal subgroups

Let R be a commutative ring. Show that $I \subset R$ is an ideal if and only if it is the kernel of some ring homomorphism. (The kernel of a ring homomorphism $R \rightarrow S$ is the set of all elements sent to $0 \in S$.)

Let $\phi: R \rightarrow S$ be a ring homomorphism. If $x \in \operatorname{ker} \phi$, then

$$
\phi(r x)=\phi(r) \phi(x)=\phi(r) \cdot 0_{S}=0_{S} .
$$

So ker ϕ is closed under scaling by arbitrary elements of R. Likewise, the kernel of a ring homomorphism is by definition the kernel of the group homomorphism $\phi:(R,+) \rightarrow(S,+)$ so it is a subgroup of R under addition. This proves $\operatorname{ker}(\phi)$ is an ideal. For the converse, we know that any ideal $I \subset R$ of a commutative ring defines a ring homomorphism $R \rightarrow R / I$ given by $r \mapsto \bar{r}$. The kernel is precisely those elements in I, so any ideal is a kernel of a ring homomorphism.

11. Characteristic

Let F be a field, and $1 \in F$ the multiplicative identity. The characteristic of F is the smallest integer n with $n \geq 1$ such that

$$
1+\ldots+1=0
$$

where the summation has n terms in it. For instance, the characteristic of $\mathbb{Z} / p \mathbb{Z}$ is p. If F is a field where $1+\ldots+1$ never equals 0 (like $\mathbb{R}, \mathbb{Q}, \mathbb{C}$) we say that F has characteristic zero.

Prove that any field (finite or not!) must have either characteristic zero, or characteristic p for some prime number p.
(By the way, there are in fact infinite fields of finite characteristic.)
We first note that n cannot equal 1 . If so, we have that $1=0$. But then $F-\{0\}$ cannot be a group with F being a ring. To see this, let $e \in F-\{0\}$ be the identity. Then $e x=x$ for all $x \neq 0$, and $e 0=0$ so e is also the multiplicative unit of F-the contradiction arises by the uniqueness of the multiplicative unit of F, which demands that $e=1$. So n cannot be 1 .
-- - -Clearly $1+\ldots+1=0$ for some finite summation with n terms in it, assume that n is divisible by two numbers, $a b$, neither of which is 1 . Then we have that

$$
(1+\ldots+1)(1+\ldots+1)=0
$$

where the left factor has a summands, and the right factor has b summands. But since F is a field, if two elements multiply to 0 , one of them must equal zero. (As we proved in class, units are not zero divisors, and every non-zero element of a field is a unit.) But then a summation of either a or b terms of 1 equals zero, contradicting the assumption that n is the smallest such number. Hence either a or b must equal 1 , meaning n must be prime.

12. Solvability of S_{n}.

(a) For $n \geq 3$, show that any cycle of length 3 is in A_{n}.

Let $(i j k)$ be a cycle of length three. It is a composition $(i j) \circ(j k)$, but the sign of $(i j)$ is minus one. Since the sign map from $S_{n} \rightarrow\{ \pm 1\}$ is a homomorphism, this means that the sign of $(i j) \circ(j k)$ is given by $-1 \times-1=1$; hence $(i j k)$ is in the kernel of the sign map.
(b) Show by example that A_{n} is not abelian for $n \geq 4$.

Consider the cycles (123) and (234). We have

$$
(123) \circ(234)=(21)(34), \quad(234) \circ(123)=(13)(24)
$$

so these two elements of $A_{n}, n \geq 4$ do not commute.
(c) Assume A_{n} is simple for $n \geq 5$. (This is a theorem we stated, but never proved.) Explain why S_{n} is not solvable for any $n \geq 5$.

By 5 (c), a non-abelian, simple group is not solvable. So A_{n} is not solvable for $n \geq 5$. If S_{n} is solvable, so would any subgroup of it be (by $5(\mathrm{~d})$), so S_{n} is not solvable for $n \geq 5$.
(d) Show that S_{n} is solvable for $n \leq 3$. So all that remains is S_{4}.

If $n=1, S_{1}$ is the trivial group, so one can take $G_{0}=G_{n}$ and we have that S_{1} is solvable. $S_{2} \cong \mathbb{Z} / 2 \mathbb{Z}$ so it is solvable, being abelian, by $5(\mathrm{a})$. Finally, S_{3} has order 6 , which is solvable by $5(\mathrm{~b})$.
(e) Prove that S_{4} is solvable. (One way: You can exhibit an abelian subgroup of order 4 in A_{4}.)

Suppose there is an abelian, normal subgroup H of order 4 in A_{4}. Then A_{4} / H must be a group of order $12 / 4=3$, hence a cyclic (and abelian) group. Then the sequence

$$
1=G_{0} \subset G_{1}=H \subset G_{2}=A_{4} \subset G_{3}=S_{4}
$$

would show that S_{4} is solvable. (Note $G_{3} / G_{2} \cong \mathbb{Z} / 2 \mathbb{Z}$.) Let

$$
H=\{1, a=(12)(34), b=(13)(24), c=(14)(23)\}
$$

Note each element is its own inverse so H is closed under taking inverses. To see it is closed under multiplication, first note

$$
(12)(34) \circ(13)(24)=(14)(23), \quad(13)(24) \circ(12)(34)=(14)(23)
$$

Since each of these elements is their own inverse, we see that $a b=$ $c, b a=c$ implies $a=c b=b c$ and $b=a c=c a$; hence this set is abelian and closed under multiplication. (It's in fact isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$, though we don't need that.) Finally, to conclude that H is closed under conjugation, recall that in the symmetric group, conjugation preserves cycle shape. And every element whose cycle shape is given by two disjoint cycles of length 2 is in H-so in fact, H is a normal subgroup of S_{4}. This implies it's a normal subgroup of A_{4}.

[^0]: ${ }^{1}$ One can prove that any finite field has size p^{k} for some prime p.
 As pointed out to me by Kevin, it's not hard-a finite field of characteristic p is a module over $\mathbb{Z} / p \mathbb{Z}$, so is a finite-dimensional vector space over $\mathbb{Z} / p \mathbb{Z}$. But how many elements must such a set have?

