
Math 122 Midterm 2 Fall 2014 Solutions

Common mistakes

i. Groups of order pq are not always cyclic. Look back on Homework
Eight. Also consider the dihedral groups D2n for n an odd prime.

ii. If H ⊂ G and H is abelian, it is not true that H is necessarily normal.
Every subgroup of an abelian G is normal, but a subgroup’s “abelian-
ness” does not inform you of its normalcy. Consider for instance the
subgroup H ⊂ Sn generated by (123). H is isomorphic to Z/3Z so is
abelian, but is not normal in Sn unless n = 3.

iii. Along these lines: Being normal is not some absolute property of a
group. For example, any group H is normal inside itself—H �H. But
if H can be realized as a subgroup of G, it is not necessarily true that
H �G! Likewise, homomorphisms do not “preserve normal subgroups”
— i.e., a homomorphism G1 → G2 need not send a normal subgroup
of G1 to a normal subgroup of G2. This is true, however, in special
cases, and also when the homomorphism is a surjection.

iv. If G1 �G2 and G2 �G3, it is not necessarily true that G1 �G3. Consider
for instance

G1 = {1, (12)(34)}, G2 = {1, (12)(34), (13)(24), (14)(23)}, G3 = A4.

Then G1 is not normal in G3—try conjugating by (123).
v. The Klein four-group is Z/2Z×Z/2Z. So you shouldn’t say that “the”

Klein 4-group is the normal, order 4 subgroup of A4. Rather, there
exists a subgroup of A4 isomorphic to the Klein 4-group, and this
subgroup happens to be normal in A4.

vi. For a commutative ring R, the notation R
× is not equal to R − {0}.

Though we haven’t used this notation much, R× is the notation for the
units of R. So if R isn’t a field, R× �= R− {0}.

vii. Some people wrote G/ kerφ = imageφ. This isn’t correct–the two
groups are not equal, they are isomorphic. Just as when there is a
bijection between two sets, it usually does not mean the two sets are
equal. As an example—a set of five bananas is not equal to a set of
five apples. But the two sets are in bijection.

viii. In the problem about showingG/K is solvable ifG is—ifG0 ⊂ . . . ⊂ Gn

is a sequence showing G is solvable, the groups Gi/K might not make
any sense, because K may not be a subgroup of Gi!
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1. Irreducibility

Let F be a field. For any x ∈ F , note that there is a function

F [t] → F,

called evaluation at x. Explicitly, if f = adt
d + . . . a1t+ a0 is a polynomial,

we send f to
f(x) = adx

d + . . . a1x+ a0 ∈ F.

Here, by x
d, we mean of course the element of F obtained by multiplying

x with itself d times.

(a) Show that for any x ∈ F , evaluation at x is a ring homomorphism.
If f(t) = 1, then f(x) = 1. Further, (f + g)(x) =

�
(ai + bi)xi =�

aix
i +

�
bix

i = f(x) + g(x). Finally, fg(x) =
�

i+j=k
aibjx

k =

(
�

i
aix

i)(
�

j
bjx

j) = f(x)g(x).
(b) Show that f can be factored by a linear polynomial if and only if there

is some x ∈ F for which f(x) = 0. (Hint: Use the division algorithm
and induct on degree.)

We showed this in class. See Lecture 33.
Recall that a polynomial f(t) ∈ F [t] is irreducible if the only poly-

nomials dividing f(t) are degree 0 (i.e., are constants) or have degree
equal to f .

(c) If F = C, show that f(t) = t
2 + 1 is not irreducible.

The element x =
√
−1 satisfies this polynomial—f(

√
−1) = −1 +

1 = 0. Hence by above, f is not irreducible.
(d) If F = R, show that f(t) = t

2 + 1 is irreducible. (Hint: If f(t) =
g(t)h(t), what can you say about the degrees of g and h? And what
does that say about solutions to f(t)?)

If f can be factored into non-units, then both g and h in the hint
must be degree one polynomials. Hence by (b), there must be some
real number such that x

2 + 1 = 0. However, for real numbers, x2 is
always non-negative, so this is impossible.

(e) For each of the primes p = 2, 3, 5, 7, indicate which of the following
polynomials has a solution in Z/pZ. (You’ll need to just compute.)
(a) t

2 + 1 (i.e., which of these finite fields has a square root to −1?)
We can just compute values of x2 in each field:

x\p 2 3 5 7
1 1 1 1 1
2 − 1 4 4
3 − − 4 2
4 − − 1 2
5 − − − 4
6 − − − 1
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of these, only p = 2 and p = 5 has -1 appearing: For instance,
22 = 32 = 4 = −1 ∈ Z/5Z. Explicitly, one can also factor the
polynomial as below:

t
2 + 1 = (t+ 1)(t+ 1)

in Z/2Z, and
t
2 + 1 = (t− 3)(t− 2)

in Z/5Z.
(b) t

3 − 2 (i.e., which of these fields has a cube root to 2?)
We can just compute values of x3 in each field:

x\p 2 3 5 7
1 1 1 1 1
2 − 2 3 1
3 − − 2 6
4 − − 4 1
5 − − − 6
6 − − − 6

of these, only p = 3 and p = 5 has 2 appearing: Namely, 23 =
32 = 4 = −1 ∈ Z/5Z. Also note that t3 − 2 factors in Z/2Z, since
x = 0 is a root. Explicitly, we have the following factorizations:

t
3
− 2 = t

3 = t · t · t in Z/2Z.
t
3
− 2 = (t− 2)(t2 + 2t+ 1) = (t+ 1)3 in Z/3Z.

t
3
− 2 = (t− 3)(t2 + 3t+ 4) in Z/5Z.

(c) t
2+t+1 (i.e., for which of these fields does this polynomial factor?)
We can just compute values of x2 + x+ 1 in each field:

x\p 2 3 5 7
1 1 0 3 3
2 − 1 2 0
3 − − 3 6
4 − − 1 0
5 − − − 3
6 − − − 1

of these, only p = 3 and p = 7 has 0 appearing. We have explicit
factorizations:

t
2 + t+ 1 = (t− 1)2 in Z/3Z.

t
2 + t+ 1 = (t− 2)(t− 4) in Z/7Z.
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2. Principal ideal domains

Let R be an integral domain. We call R a principal ideal domain if
every ideal I ⊂ R is equal to (x) for some x ∈ R. That is, every ideal is
generated by a single element.

(a) Show that Z is a principal ideal domain. (We’ve done this in class, so
you can do it, too!)

See class notes. Any subgroup of Z is equal to (n) = nZ, so in
particular, any ideal must also be generated by some single element N .

(b) Let F be a field. Show that F [t] is a principal ideal domain. (Hint:
If I �= (0), let n be the least degree for which a degree n polynomial
is in I. If p(t) and q(t) are both degree n polynomials, how are they
related? Finally, given any f(t) ∈ I, what happens when you divide
f(t) by p(t) and look at the remainder?)

Following the hint: Let n be the smallest degree among non-zero
elements in I. Let p(t) be a polynomial in I of degree n. If you divide
any f(t) ∈ I by p(t), the division algorithm tells us that we end up
with polynomial of degree less than n—but then we have that

f(t) = p(t) · g(t) + r(t), deg r(t) < n

while
r(t) = f(t)− p(t)g(t)

must be in I by definition of ideal. This means that r(t) must be
zero, or that every polynomial f(t) ∈ I is divisible by p. Hence I =
(p(t)). (The hint about p(t) and q(t) to be equal-degree polynomials
was unnecessary.)
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3. The second isomorphism theorem

Fix a group G. Let S ⊂ G be a subgroup, and N � G be a normal
subgroup.

(a) Let SN be the set of all elements in G of the form sx where s ∈ S and
x ∈ N . Show this is a subgroup of G.

Given s1, s2 ∈ S and x1, x2 ∈ N , we have that

s1x1s2x2 = s1s2s
−1
2 x1s2x2 = s1s2x

�
x2

for some x
� ∈ N (since N is normal). And s1s2 ∈ S and x

�
x2 ∈ N

since both are closed under multiplication. The identity is in SN since
1 ∈ S,N and 1 · 1 = 1. Finally, SN contains inverses because

x
−1

s
−1 = (s−1

x
�
s)s−1 = s

−1
x
�

where x
� ∈ N is the element such that x� = sx

−1
s
−1.

(b) Show that N is a normal subgroup of SN .
We know gxg

−1 ∈ N for every g ∈ G and x ∈ N . Since SN ⊂ G,
we in particular have that gxg−1 ∈ N for any g ∈ SN .

(c) Show that S ∩N is a normal subgroup of S.
If x ∈ S ∩ N , then for all s ∈ S, we know sxs

−1 ∈ N since N is
normal in G. On the other hand, S is closed under multiplication, so
sxs

−1 ∈ S as well. This shows sxs−1 ∈ N ∩ S.
(d) Exhibit an isomorphism between S/(S ∩ N) and SN/N . (Hint: Does

the equivalence class [s] in the former group define an equivalence class
[sn] in the latter group? Does the n in [sn] matter?)

A solution without using the hint: Consider the composition of
homomorphisms

S → SN → SN/N

where the latter is the quotient map, and the former is simply the
inclusion (note that S ⊂ SN). This composition is a surjection since
for any n ∈ N , the element [sn] ∈ SN/N is equal to the element
[s] ∈ SN/N . Its kernel is the set of those elements s which are in
N—i.e., S ∩N . So we are finished by the first isomorphism theorem.

Alternative proof: This is an explicit construction of the inverse
map—illustrated here in case you wanted something more hands-on.
Given [sn] ∈ SN/N , consider [s] ∈ S/(S ∩N).

• We claim the assignment φ : [sn] �→ [s] is well-defined. For if
sn = s

�
n
�
x with x ∈ N , then

s = s
�(n�

xn
−1).

We must show that the element n�
xn

−1 is in S ∩N . Well, we see
it must be in S by multiplying both sides on the left by s

�−1. We

5



Fall 2014 Math 122 Midterm 2

know that it’s in N since the elements n�
, x, n

−1 are all in N and
N is closed under multiplication.

• Now we show it is a group homomorphism:

φ([s1n1][s2n2]) = φ([s1n1s2n2)] = φ([s1s2(s
−1
2 n1s2n2)])

= φ([s1s2(n
�
n2)])

= [s1s2]

= [s1][s2]

= φ([s1n1])φ([s2n2]).

• To show it is an injection, we must show that the kernel is trivial.
Well, if φ([sn]) = [x] for x ∈ S ∩N , then [sn] has a representative
of the form xn

�; but x ∈ X∩N,n
� ∈ N implies xn� ∈ N by the fact

that N is closed under multiplication, so [sn] = [sn�] = 1 ∈ SN/N .
• To show surjection, note that for any s ∈ S, we have that s =
s1G ∈ SN . So φ([s1G]) = φ(s).
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4. Subgroups descend to quotient groups

Let G be an arbitrary group, and H � G.

(a) Show that there is a bijection between the set of subgroups in G con-
taining H, and the set of subgroups in G/H.

Let p : G → G/H be the group homomorphism given by sending
g �→ [g].

• Given a subgroup K ⊂ G, note the composition of group homo-
morphisms

K �→ G → G/H.

Since the image of any group homomorphism is a subgroup, this
shows that p(K) is a subgroup of G/H. So we have a function
{subgroups of G} → {subgroups of G/H} given by sending K �→

p(K).
• We show it is a surjection: Given K

� ⊂ G/H, consider the pre-
image p

−1(K �) ⊂ G. This is a subgroup of G since if p(x), p(y) ∈
K

�, then p(xy) = p(x)p(y) ∈ K
� (because K

� is closed under mul-
tiplication).

• Now it suffices to show that p
−1(p(K)) = K for all subgroups

K ⊂ G. Obviously K ⊂ p
−1(p(K)). To show the other inclusion,

let x ∈ p
−1(p(K)). We know by definition of p(K) that there is

some y ∈ K for which p(x) = p(y). Then p(xy−1) = 1G/H , so
xy

−1 ∈ H. Since K contains H, xy−1 ∈ K, hence x ∈ K.
(b) Show that there is a bijection between the set of normal subgroups in

G containing H, and the set of normal subgroups in G/H. (This time,
this isn’t extra credit.)

• We show that if K is normal, then p(K) is normal. (This proves
we have a function

{normal subgroups of G} → {normal subgroups of G/H}.)

Well, if [k] ∈ p(K), then [g][k][g]−1 = [gkg−1] = [k�] for some
k
� ∈ K since K is normal in G. So p(K) ⊂ G/H is normal.

(Note we are using the fact that G → G/H is a surjection here—
otherwise, we wouldn’t know that every element of G/H is in the
image of p(G).)

• Surjectivity: We show that if p(K) is normal, thenK = p
−1(p(K))

is normal (this equality follows from part (c) above). If k ∈ K

and g ∈ G, we have that [gkg−1] = [g][k][g−1] = [k�] for some
[k�] ∈ p(K)—i.e., for some k

� ∈ K. So gkg
−1 ∈ p

−1(p(K)) = K.
• We know that this assignment is an injection by part (c) from the
previous problem’s solution. So we are finished.
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5. Solvable groups

A group G is called solvable if there exists a finite sequence of subgroups

1 = G0 ⊂ G1 ⊂ . . . ⊂ Gn = G

such that for all i ≥ 0, Gi � Gi+1 and Gi+1/Gi is abelian.

(a) Show that any abelian group is solvable. (If this seems trivial, it’s
because it is.)

If G is abelian, take G0 = 1 and Gn = G1 = G. This shows G is
solvable.

(b) Show any group of order pq, where p and q are distinct primes, is
solvable.

Assume p < q. We know any such group G has a normal subgroup
H of order q—hence, a normal subgroup isomorphic to Z/qZ (since
any group of prime order is cyclic). We know the existence of such a
normal subgroup by applying the Sylow theorems—see Lecture 22—or
by 5(b) of Homework Five. This guarantees that we have a short exact
sequence

1 → H → G → Z/pZ → 1.

(Note that G/H must have order |G|/|Hq| = pq/q = p, so we know it
has to be isomorphic to Z/pZ.) So take

1 = G0 ⊂ G1 = H ⊂ G2 = G.

Then G1/G0
∼= H ∼= Z/qZ is abelian, and G2/G1

∼= Z/pZ is, too.
(c) Show that if G is simple and non-abelian, G cannot be solvable.

Since G is simple, it has no normal subgroups aside from G and
{1}. So if Gi−1 � Gi with Gi = G and Gi−1 �= Gi, we must have that
Gi−1 = {1}. But then Gi/Gi−1

∼= G is not abelian, so G is not solvable.

The following is a great application of the isomorphism theorems,
and of the previous problem.

(d) Show that if G is solvable, so is any subgroup of G.
Let S ⊂ G be a subgroup. If G is solvable, there is some sequence

of subgroups

1 = G0 ⊂ G1 ⊂ . . . ⊂ Gn = G

such that for all i ≥ 0, Gi � Gi+1 and Gi+1/Gi is abelian. So consider
the sequence

1 = S0 ⊂ S1 ⊂ . . . ⊂ Sn = S, Si = S ∩Gi.

• We know Si+1 ⊂ Gi+1 is a subgroup, and Gi � Gi+1, so by 3(c) of
this midterm, we conclude that Si+1 ∩Gi = Si is normal in Si+1.

8



Fall 2014 Math 122 Midterm 2

• So we must now show that Si+1/Si is abelian. Consider the com-
position

Si+1 �→ Gi+1 → Gi+1/Gi

which we call φ. (The first homomorphism is the inclusion, while
the second is the quotient homomoprhism.) By definition of the
quotient, the kernel of φ is the set of all elements in Si+1 that are
also in Gi—that is, the kernel is Si. Hence Si+1/Si is isomorphic
to the image of φ by the first isomorphism theorem. But any
subgroup of any abelian group is abelian, and the image of φ is a
subgroup of Gi+1/Gi—which is abelian by assumption.

(e) Show that if G is solvable, and K ⊂ G is normal, then G/K is solvable.
Let p : G → G/K be the quotient homomorphism. Since G is

solvable, we can find a sequence of subgroups

1 = G0 ⊂ G1 ⊂ . . . ⊂ Gn = G

such that for all i ≥ 0, Gi �Gi+1 and Gi+1/Gi is abelian. Consider the
sequence

1 = H0/K ⊂ H1/K ⊂ . . . ⊂ Hn/K = G/K, Hi = GiK,

We claim this sequence satisfies the properties necessary to show that
G/K is solvable. Note that since K is normal in G and Gi � Gi+1,
we see that Hi � Hi+1. (Explicitly: If X ∈ Gi+1 and Y ∈ K, with
x ∈ Gi, y ∈ K, we have

(XY )xy(XY )−1 = XY xyY
−1

X
−1

= Xxx
−1

Y xyY
−1

X
−1

= XxY
�
yY

−1
X

−1

= XxX
−1

XY
�
yY

−1
X

−1

= x
�
X(Y �

yY
−1)X−1

= x
�
y
�
.

When we replace Y by Y
�, or x by x

�, we are using the normalcy of
the subgroup containing Y , or x.) So by 4(b), we know that Hi/K �

Hi+1/K. By the third isomorphism theorem, we know

(Hi+1/K)/(Hi/K) ∼= Hi+1/Hi

but this latter group is Gi+1K/GiK. Setting S = Gi+1 and N =
GiK (which is normal in Gi+1K), note that Gi+1K = SN . (This is
because Gi ⊂ Gi+1.) So the second isomorphism theorem gives us the
isomorphism in the following line:

Gi+1K/GiK = SN/N ∼= S/(S ∩N) = Gi+1/(Gi+1 ∩GiK).

9
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But since Gi ⊂ (Gi+1 ∩ GiK), this last group receives a surjective
homomorphism

Gi+1/Gi → Gi+1/(Gi+1 ∩GiK).

Any group receiving a surjective homomorphism from an abelian group
must be an abelian group.

10



Fall 2014 Math 122 Midterm 2

6. GLn(Fq)

Let Fq be a finite field with q elements.

(a) Let V = Fn

q
= F⊕n

q
be an n-dimensional vector space over Fq. Show

that G = GLn(Fq) acts transitively on V − {0}. (That is, show that
for any pair x, y ∈ V , there is some group element g so that gx = y.)

Fix x. If we can show that for all y, there exists g so that gx = y,
we’re finished. For given another element x

�, we are guaranteed an
element h so that hx� = x. Then

(gh)x� = g(hx�) = gx = y.

So let x be the standard column vector




1
0
...
0




.

If y is any non-zero vector, note that it alone forms a linearly inde-
pendent set. But any linearly independent collection of vectors can be
completed to a basis (29.18 from Lecture 29)—so let y1, y2, . . . , yn be
some basis where y1 = y. Then the matrix g whose ith column is yi

is invertible. (Page 3, Lecture 36.) Moreover, by definition of matrix
multiplication, gx = y1 = y.
- - - -For an alternative proof: If y is a column vector whose top entry
is y1 �= 0, then the matrix g whose first column is given by y, and is
otherwise a diagonal matrix with 1 along the diagonal:

g =





y1 0 0 . . . 0
y2 1 0 . . . 0
y3 0 1 . . . 0
... . . . . . . . . .

...
yn 0 0 . . . 1





This is invertible since its determinant is y1 �= 0, and satisfies gx = y.
On the other hand, if y1 = 0, there is some entry of y with yi �= 0 since
y �= 0. In this case, let g

� be the matrix whose ith column is y, and
which is otherwise a diagonal matrix with 1 along the diagonal. This is
invertible because its determinant is yi �= 0. Also consider the matrix
h which swaps the ith standard basis vector with the 1st, and leaves all
other standard basis vectors intact. (This is the matrix corresponding
to the permutation (1i).) Then we have that (gh)x = y.
- - - - For another proof: Some people wanted to show that if xi form
a basis and yi form a basis, there is some invertible transformation A

11



Fall 2014 Math 122 Midterm 2

taking xi �→ yi. (This is overkill, but yields the result we need: Given
x and y, complete each of them to a basis, and use the matrix A.) So
let’s prove the claim. Well, by definition, a basis x1, . . . , xn determines
an F-module isomorphism

Tx : Fn
→ Fn

, ei �→ xi

where ei are the standard basis vectors. Likewise, the basis y1, . . . , yn
determines an F-module isomorphism

Ty : Fn
→ Fn

, ei �→ yi.

You can check that the inverse of an F-module homomorphism is again
an F-module homomorphism, and that the composition of invertible
F-module homomorphisms is again invertible. So consider

A = Ty ◦ (Tx)
−1

.

This is an invertible transformation that takes yi to xi by definition.
(b) Prove that G = GLn(Fq) has

�
n�

k=1

(qk − 1)

��
n−1�

k=1

q
k

�

elements in it. (You can either count intelligently, or apply the orbit-
stabilizer theorem inductively. Either way, use matrices.)

First note that if n = 1, we have thatGL1(Fq) is the set of invertible
1 × 1 matrices—that is, the set of all invertible elements in Fq. Since
Fq is a field, this means that |GL1(Fq)| = q − 1.
Now: Let x = e1 be the standard basis vector with 1 in the first entry
and 0 elsewhere. The stabilizer of x is the set of all matrices g for which
gx = x—that is, the set of all matrices whose first column is given by
e1. (This is because ge1 always equals the first column of g—if you’re
not sure why, try writing it out.) How many such invertible matrices
are there? Well, writing

g =

�
1 −�u−

0 A

�

where �u is some row vector with n−1 entries, and A is a (n−1)×(n−1)
matrix, we see that det g = detA. So g is invertible if and only if A is,
while the entries of �u have no effect on whether g is invertible. By the
orbit stabilizer theorem,

|GLn(Fq) = |Ox| · |Stabilizer(x)|.

By above, the orbit of x is all of Fn

q
− {0}—but Fn

q
has q

n elements
in it, so removing {0} yields an orbit with size q

n − 1. On the other
hand, an element of the stabilizer is determined uniquely by a choice

12
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of A and of �u—there are |GLn−1(Fq)| choices for A, and q
n−1 choices

for �u. Thus we have that

|GLn(Fq)| = (qn − 1) · (qn−1)(|GLn−1(Fq)|).

Now you can check that the formula holds as claimed, by induction.
(c) Show that GLn(Fq) has a normal subgroup of index q − 1. (Hint: The

determinant is still a group homomorphism.)
The group homomorphism GLn(Fq) → (Fq − {0}) is a surjection.

(For instance, take the diagonal matrix with diagonal entries given by
1 and by a single appearance of a. This has determinant a.) Hence
the index of its kernel is given by the size of the target group, which is
q − 1.

(d) Consider G = GL2(Fq). Assume p is the unique prime number dividing
q. 1 Show that | Syl

p
(G)| cannot equal 1. (Try thinking about upper-

triangular and lower-triangular matrices, then think about special cases
of them.)

The group GL2(Fq) has size

(q2 − 1)(q − 1)q

according to the previous problem. So any subgroup of size q is a Sylow
p-subgroup. (If q is divisible by only p, then no number of the form
q
k − 1 is divisible by p.) We claim that the set of all upper-triangular
matrices with 1 along the diagonal, and the set of all lower-triangular
matrices with 1 along the diagonal, each form a subgroup of order q—
thus Syl

p
(Fq) has more than one element.

- - - Note that the size of each set is obviously q. The determinant of an
element in either of these sets is 1, and the identity matrix is in both
sets, so we just need to prove that both are closed under multiplication:

�
1 a

0 1

� �
1 b

0 1

�
=

�
1 a+ b

0 1

�
.

The proof for the lower-triangular case is identical; just take the trans-
pose of each matrix.
- - - - By the way, you can show that for any n, the upper-triangular
matrices with 1 along the diagonal constitute a q-Sylow subgroup of
GLn(Fq).
- - - - - Another proof, even without producing a Sylow subgroup: Note
that the sizes of the set of upper-triangular and lower-triangular matri-
ces are divisible by q, so these must contain p-Sylow subgroups, H and

1
One can prove that any finite field has size pk for some prime p.
As pointed out to me by Kevin, it’s not hard—a finite field of characteristic p is

a module over Z/pZ, so is a finite-dimensional vector space over Z/pZ. But how many

elements must such a set have?

13
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K. But the intersection of the upper-triangular and lower-triangular
matrices are the diagonal matrices, of which there are (q− 1)n (a num-
ber not divisible by q). Hence the p-Sylow subgroups contained in H

and K must be distinct.
(e) How many elements of order 3 are in GL2(F3)? (You may want to start

by determining the number of Sylow 3-subgroups. Either way, dig in.)
Note that the 3-Sylow subgroups of GL2(F3) are given by sub-

groups of order 3. Note also that if two subgroups of order 3 have an
intersection that contains more than the identity, then the two sub-
groups must be equal (you can check this). Moreover, for each distinct
3-Sylow subgroup H, the generator x ∈ H and its square, x2, represent
distinct elements of order 3. Conversely, any element of order 3 de-
termines a 3-Sylow subgroup by looking at the subgroup it generates.
Hence the number of elements of order 3 is given by 2 · | Syl3(GL2(F3))|.
- - - - By (d), we know that s := | Syl3(GL2(F3))| ≥ 2. By the Sylow
theorems, the number s must divide

(q2 − 1)(q − 1) = 8 · 2 = 16

and must equal 1 modulo 3. This leaves the options of s = 4 or s = 16.
Claim: s = 16 is impossible. Note that then we would have 2 · 16 = 32
elements of order 3. And the Sylow Theorem guarantees that we have
at least one group of order 16—the 2-Sylow subgroup. Since 32+ 16 =
48 = |GL2(F3)|, this implies there can be no elements of order other
than 3 (those elements in a subgroup of order 3), or some power of
2 (those elements in the Sylow 2-subgroup). But there is in fact an
element of order 6 in GL2(F3), given by

�
2 1
0 2

�
.

To see this, note �
2 1
0 2

�2
=

�
1 1
0 1

�

while �
1 a

0 1

�n
=

�
1 an

0 1

�

in general. So s = 16 leads to a contradiction, and we conclude that
s = 4. this means that there are 2 · 4 = 8 elements of order 3.
- - - - Another proof that s = 16 is impossible: Any element of order 3
must have determinant 1—after all, (det g)3 = det g3 = det I = 1, and
the only cube root of 1 in F3 is 1. But the kernel of the determinant
has |GL2(F3)|/|F3 = {0}| = 48/2 = 24 elements in it, so it couldn’t
contain 32 elements.

14



Fall 2014 Math 122 Midterm 2

- - - - Yet another proof that s = 16 is impossible: From the proof of
the Sylow theorems, we know that [GL2(F3) : N(H)] = s, where N(H)
is the normalizer of the Sylow 3-subgroup H. But the elements

�
1 0
0 1

�
,

�
1 1
0 1

�
,

�
1 2
0 1

�
,

�
2 0
0 2

�

all normalize the 3-Sylow subgroupH of upper triangular matrices with
1 along the diagonal. Hence |N(H)| ≥ 4, and s must be less than 16.
- - - - - Another proof: Let K be the kernel of the determinant map.
It’s a normal subgroup of index 2, so of order 24. By Sylow’s theorems,
you can see that K must contain either 1 or 4 subgroups of order
3 (check this yourself). But the upper and lower-triangular matrices
with 1 along the diagonal are both subgroups of K, so there must be
4 subgroups of order 3 in K. Since any 3-Sylow subgroup of GL2(Fq)
must be conjugate by Sylow’s theorems, they must all be contained in
K since K is closed under conjugation. So these 4 subgroups in K are
also all the 3-Sylow subgroups of GL2(Fq), and we have that s = 4.

15
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No more collaboration

7. Ring homomorphisms

(a) Show that a composition of two ring homomorphisms is a ring homo-
morphism.

Let f : R → S and g : S → T be ring homomorphisms. We know
the composition of two group homomorphisms is a group homomor-
phism, we know that g ◦ f is a group homomorphism under addition.
Thus we need only check that g ◦ f(r1r2) = (g ◦ f(r1))(g ◦ f(r2)), and
that g ◦ f(1R) = 1T . The first equality follows because

g ◦ f(r1r2) = g(f(r1)f(r2)) = g(f(r1))g(f(r2)).

The last follows because gf(1R) = g(1S) = 1T .
(b) For a ring R, let Mk×k(R) denote the ring of k×k matrices with entries

in R. Specifically, if (aij) is a matrix whose i, jth entry is aij , we define

(aij) + (bij) = (aij + bij), (aij)(bij) = (
k�

l=l

ailblj).

Show that if f : R → S is a ring homomorphism, then the function

F : Mk×k(R) → Mk×k(S), (aij) �→ (f(aij))

is a ring homomorphism.
To show that F is a group homomorphism with respect to addition,

let aij and bij be the i, jth entries of matrices A,B having entries in
R. Then

F (A+B)ij = f(aij + bij) = f(aij) + f(bij) = (F (A) + F (B))ij .

Since the i, jth entries of both matrices agree, we have that F (A+B) =
F (A) + F (B). To show that the multiplicative identity is mapped to
the multiplicative identity, note that the identity of the ring of k × k

matrices is given by the diagonal matrix with diagonal entries 1R and
1S , respectively. But since f is a ring homomorphism, F sends the
identity of Mk×k(R) to that of Mk×k(S). Finally, we must show that
F respects multiplication. To see this, note

F (AB)ij = f(
k�

l=1

ailblj) =
k�

l=1

f(ail)f(blj) =
k�

l=1

F (A)ilF (B)lj = (F (A)F (B))ij .

(c) Prove that
f(detA) = det(F (A)).

You may want to start by proving it for k = 1, then perform induction
using the cofactor definition of determinants.

16
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This is true for k = 1, since a 1× 1 matrix A is the data of choice
of an element a ∈ R, and its determinant is equal to a. Hence

f(detA) = f(a) = detF (A).

By induction, assume the equality holds for matrices of dimension ≤

k − 1. We have that

f(detA) = f(
k�

i=1

(−1)i+1
a0i detC0i)

where C0i is the matrix obtained by deleting the 0th row and ith column
of A. Since f is a ring homomorphism, we have that this in turn equals

k�

i=1

(−1)i+1
f(a0i)f(detC0i) =

k�

i=1

(−1)i+1
F (A)0i detF (C0i).

Noting that F (C0i) is the cofactor matrix of F (A) given by deleting
the 0th row and ith column, we are finished.

17
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8. Invertible matrices

Let S be a ring. We say x ∈ S is a unit if there is a multiplicative
inverse to x—i.e., an element y ∈ S so that xy = yx = 1S . As an example,
if S is the ring of k× k matrices in some ring R, then a matrix is invertible
if and only if it is a unit.

(a) Determine which of the following matrices is a unit in Mk×k(Z):
�

2 5
4 4

� �
2 5
9 4

� 


1 0 0
2 3 4
5 6 7





None of them. A matrix with coefficients in R is a unit if and only
if its determinant is a unit in R. But the determinant of the above
three matrices are

8− 20 = 12, 8− 45 = −37, 21− 24 = 3

respectively. However, the only units in Z are ±1.
(b) For the primes p = 2, 3, 5, consider the ring homomorphism Z → Z/pZ

sending a �→ a. This induces a ring homomorphism Mk×k(Z) →

Mk×k(Z/pZ) by the previous problem. Determine which of the ma-
trices above is sent to a unit for each choice of p = 2, 3, 5.

Modulo p, the integer determinants 12,−37, 3 above are given re-
spectively by

0, 1, 1 (mod2)

0, 2, 0 (mod3)

2, 3, 3 (mod5).

Since Z/pZ is a field, the invertible matrices are those who determinants
are non-zero, (since, in a field, any non-zero element is a unit).

18
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9. Bases

Let M = Z/nZ.
(a) Show that M admits no basis as a module over Z.

The easiest proof: Any basis induces an isomorphism Zk → M .
But M is finite, while Zk is finite if and only if k = 0.
- - - - A more hands-on proof: For any element x ∈ M , we have that
nx = 0 ∈ M . Hence M does not admit any non-empty sets of linearly
independent elements, hence admits no basis.

(b) Show that M admits a basis as a module over the ring R = Z/nZ.
Let x = 1. This is a spanning set because for any j ∈ M , we know

that j = j ·x. It is linearly independent because ax = 0 in Z/nZ means
that a · 1 is a multiple of n. But this means a itself must be a multiple
of n, hence a = 0 ∈ R.
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10. Ideals are like normal subgroups

Let R be a commutative ring. Show that I ⊂ R is an ideal if and
only if it is the kernel of some ring homomorphism. (The kernel of a ring
homomorphism R → S is the set of all elements sent to 0 ∈ S.)

Let φ : R → S be a ring homomorphism. If x ∈ kerφ, then

φ(rx) = φ(r)φ(x) = φ(r) · 0S = 0S .

So kerφ is closed under scaling by arbitrary elements of R. Likewise, the
kernel of a ring homomorphism is by definition the kernel of the group
homomorphism φ : (R,+) → (S,+) so it is a subgroup of R under addition.
This proves ker(φ) is an ideal. For the converse, we know that any ideal
I ⊂ R of a commutative ring defines a ring homomorphism R → R/I given
by r �→ r. The kernel is precisely those elements in I, so any ideal is a
kernel of a ring homomorphism.
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11. Characteristic

Let F be a field, and 1 ∈ F the multiplicative identity. The character-
istic of F is the smallest integer n with n ≥ 1 such that

1 + . . .+ 1 = 0

where the summation has n terms in it. For instance, the characteristic of
Z/pZ is p. If F is a field where 1 + . . .+ 1 never equals 0 (like R,Q,C) we
say that F has characteristic zero.

Prove that any field (finite or not!) must have either characteristic
zero, or characteristic p for some prime number p.

(By the way, there are in fact infinite fields of finite characteristic.)
We first note that n cannot equal 1. If so, we have that 1 = 0. But then

F −{0} cannot be a group with F being a ring. To see this, let e ∈ F −{0}
be the identity. Then ex = x for all x �= 0, and e0 = 0 so e is also the
multiplicative unit of F—the contradiction arises by the uniqueness of the
multiplicative unit of F , which demands that e = 1. So n cannot be 1.
- - - -Clearly 1 + . . .+ 1 = 0 for some finite summation with n terms in it,
assume that n is divisible by two numbers, ab, neither of which is 1. Then
we have that

(1 + . . .+ 1)(1 + . . .+ 1) = 0

where the left factor has a summands, and the right factor has b summands.
But since F is a field, if two elements multiply to 0, one of them must equal
zero. (As we proved in class, units are not zero divisors, and every non-zero
element of a field is a unit.) But then a summation of either a or b terms
of 1 equals zero, contradicting the assumption that n is the smallest such
number. Hence either a or b must equal 1, meaning n must be prime.
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12. Solvability of Sn.

(a) For n ≥ 3, show that any cycle of length 3 is in An.
Let (ijk) be a cycle of length three. It is a composition (ij) ◦ (jk),

but the sign of (ij) is minus one. Since the sign map from Sn → {±1}
is a homomorphism, this means that the sign of (ij) ◦ (jk) is given by
−1×−1 = 1; hence (ijk) is in the kernel of the sign map.

(b) Show by example that An is not abelian for n ≥ 4.
Consider the cycles (123) and (234). We have

(123) ◦ (234) = (21)(34), (234) ◦ (123) = (13)(24)

so these two elements of An, n ≥ 4 do not commute.
(c) Assume An is simple for n ≥ 5. (This is a theorem we stated, but never

proved.) Explain why Sn is not solvable for any n ≥ 5.
By 5(c), a non-abelian, simple group is not solvable. So An is not

solvable for n ≥ 5. If Sn is solvable, so would any subgroup of it be (by
5(d)), so Sn is not solvable for n ≥ 5.

(d) Show that Sn is solvable for n ≤ 3. So all that remains is S4.
If n = 1, S1 is the trivial group, so one can take G0 = Gn and we

have that S1 is solvable. S2
∼= Z/2Z so it is solvable, being abelian, by

5(a). Finally, S3 has order 6, which is solvable by 5(b).
(e) Prove that S4 is solvable. (One way: You can exhibit an abelian sub-

group of order 4 in A4.)
Suppose there is an abelian, normal subgroup H of order 4 in A4.

Then A4/H must be a group of order 12/4 = 3, hence a cyclic (and
abelian) group. Then the sequence

1 = G0 ⊂ G1 = H ⊂ G2 = A4 ⊂ G3 = S4

would show that S4 is solvable. (Note G3/G2
∼= Z/2Z.) Let

H = {1, a = (12)(34), b = (13)(24), c = (14)(23)}.

Note each element is its own inverse soH is closed under taking inverses.
To see it is closed under multiplication, first note

(12)(34) ◦ (13)(24) = (14)(23), (13)(24) ◦ (12)(34) = (14)(23).

Since each of these elements is their own inverse, we see that ab =
c, ba = c implies a = cb = bc and b = ac = ca; hence this set is
abelian and closed under multiplication. (It’s in fact isomorphic to
Z/2Z⊕Z/2Z, though we don’t need that.) Finally, to conclude that H
is closed under conjugation, recall that in the symmetric group, con-
jugation preserves cycle shape. And every element whose cycle shape
is given by two disjoint cycles of length 2 is in H—so in fact, H is a
normal subgroup of S4. This implies it’s a normal subgroup of A4.
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