## Practice problems for Midterm 1

The midterm will take place Wednesday, October 15th, right after Columbus Day weekend.

## 1. Definitions

Know the definitions of the following. ${ }^{2}$
(a) Group
(b) Subgroup
(c) Order of an element
(d) Order of a group
(e) Group homomorphism
(f) Group isomorphism
(g) Kernel
(h) Image
(i) Normal subgroup
(j) Conjugation by $h$
(k) Conjugacy class of an element of a group
(l) $\operatorname{Aut}_{S e t}(X)$
(m) Group action on a set $X$.
(n) Orbit
(o) Orbit space
(p) Index of a subgroup (be precise!)
(q) Stabilizer
(r) Center of a group
(s) Abelian group
(t) When $H$ is normal, the group operation on $G / H$.

[^0](u) $\mathbb{Z} / n \mathbb{Z}$
(v) $S_{n}$
(w) $A_{n}$
(x) Simple group

## 2

(a) Prove that the kernel of any group homomorphism is a normal subgroup.

3
(a) Show that if two cyclic groups have the same order (finite or not), they must be isomorphic.

## 4

(a) Exhibit an explicit element $\tau$ showing that (123)(45) and (253)(16) are conjugate in $S_{6}$.
(b) Show that $S_{n}$ has at least $n$ distinct subgroups of order $(n-1)$ !.
(c) Write down every subgroup of $S_{3}$ explicitly. That is, what are the subsets of $S_{3}$ that are subgroups? When you write elements of $S_{3}$, use cycle notation.

## 5

(a) If $S$ is a finite set, show that the free group on $S$ is finitely generated.
(b) Prove that any finite group is finitely generated.

6
(a) Show that $\mathbb{Z}$ is not simple.
(b) Show that $S_{3}$ is not simple.
(c) Show that $\mathbb{Z} / 12 \mathbb{Z}$ is not simple.
(d) Show that $A_{4}$ is not simple.
(a) Let $H$ be the subgroup of $S_{5}$ generated by (13)(245). Write down every element of $H$.
(b) Compute the index of $H$ inside $S_{5}$.

8
(a) State the first isomorphism theorem.
(b) State Lagrange's theorem.

Show by example that a subgroup of a simple group need not be simple. (You may assume that $A_{5}$ is simple.)

10
Recall that the Hamiltonians, or the quaternions, is the name for $\mathbb{R}^{4}$ equipped with the following operation: If $(s, \vec{u})$ and $(t, \vec{v}) \in \mathbb{R} \times \mathbb{R}^{3} \cong \mathbb{R}^{4}$ are elements, we define

$$
(s, \vec{u}) \cdot(t, \vec{v}):=(t s-\vec{u} \cdot \vec{v}, \quad t \vec{u}+s \vec{v}+\vec{u} \times \vec{v})
$$

Here, $\vec{u} \cdot \vec{v}$ indicates the dot product of $\vec{u}$ with $\vec{v}$. In the last coordinate, $\vec{u} \times \vec{v}$ is the cross product in $\mathbb{R}^{3}$.

Let $S^{3}$ denote those elements $(s, \vec{u}) \in \mathbb{R}^{4}$ for which $s^{2}+|\vec{u}|^{2}=1$. Show that $S^{3}$ is a group under the above multiplication. Show that $S^{3}$ is not an abelian group.

## 11. Short exact sequences

Show that following sequences do not split:
(a) $\mathbb{Z} \xrightarrow{\times n} \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ for $n \neq 0, \pm 1$.
(b) $\mathbb{Z} / 2 \mathbb{Z} \xrightarrow{\phi} \mathbb{Z} / 4 \mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ where $\phi([0])=[0]$ and $\phi([1])=[2]$.

12
If $n$ and $m$ are relatively prime (meaning they share no common divisors aside from 1) show that $\mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z} \cong \mathbb{Z} /(n m) \mathbb{Z}$.


[^0]:    ${ }^{2}$ If you are like me, you may also despise the memorization aspect of math. I've always disliked how tests force you to memorize. But we need a common and efficient language to speak of complex ideas, and this section is meant to make sure that you can communicate using the language on which English-speaking mathematicians have come to agree. Moreover, I hope that some of these ideas become intuitive enough that you will even be able to guess the correct definition, based on how we have come to know these words.

