Practice problems for Midterm 1

The midterm will take place Wednesday, October 15th, right after Columbus Day weekend.

1. Definitions

Know the definitions of the following. 2

- (a) Group
- (b) Subgroup
- (c) Order of an element
- (d) Order of a group
- (e) Group homomorphism
- (f) Group isomorphism
- (g) Kernel
- (h) Image
- (i) Normal subgroup
- (j) Conjugation by h
- (k) Conjugacy class of an element of a group
- (l) $\operatorname{Aut}_{Set}(X)$
- (m) Group action on a set X.
- (n) Orbit
- (o) Orbit space
- (p) Index of a subgroup (be precise!)
- (q) Stabilizer
- (r) Center of a group
- (s) Abelian group
- (t) When H is normal, the group operation on G/H.

 $^{^{2}}$ If you are like me, you may also despise the memorization aspect of math. I've always disliked how tests force you to memorize. But we need a common and efficient language to speak of complex ideas, and this section is meant to make sure that you can communicate using the language on which English-speaking mathematicians have come to agree. Moreover, I hope that some of these ideas become intuitive enough that you will even be able to *guess* the correct definition, based on how we have come to know these words.

- (u) $\mathbb{Z}/n\mathbb{Z}$
- (v) S_n
- (w) A_n
- (x) Simple group

$\mathbf{2}$

(a) Prove that the kernel of any group homomorphism is a normal subgroup.

3

(a) Show that if two cyclic groups have the same order (finite or not), they must be isomorphic.

4

- (a) Exhibit an explicit element τ showing that (123)(45) and (253)(16) are conjugate in S_6 .
- (b) Show that S_n has at least n distinct subgroups of order (n-1)!.
- (c) Write down every subgroup of S_3 explicitly. That is, what are the subsets of S_3 that are subgroups? When you write elements of S_3 , use cycle notation.

$\mathbf{5}$

- (a) If S is a finite set, show that the free group on S is finitely generated.
- (b) Prove that any finite group is finitely generated.

6

- (a) Show that \mathbb{Z} is not simple.
- (b) Show that S_3 is not simple.
- (c) Show that $\mathbb{Z}/12\mathbb{Z}$ is not simple.
- (d) Show that A_4 is not simple.

$\mathbf{7}$

- (a) Let H be the subgroup of S_5 generated by (13)(245). Write down every element of H.
- (b) Compute the index of H inside S_5 .

8

- (a) State the first isomorphism theorem.
- (b) State Lagrange's theorem.

9

Show by example that a subgroup of a simple group need not be simple. (You may assume that A_5 is simple.)

$\mathbf{10}$

Recall that the Hamiltonians, or the quaternions, is the name for \mathbb{R}^4 equipped with the following operation: If (s, \vec{u}) and $(t, \vec{v}) \in \mathbb{R} \times \mathbb{R}^3 \cong \mathbb{R}^4$ are elements, we define

$$(s, \vec{u}) \cdot (t, \vec{v}) := (ts - \vec{u} \cdot \vec{v}, \qquad t\vec{u} + s\vec{v} + \vec{u} \times \vec{v}).$$

Here, $\vec{u} \cdot \vec{v}$ indicates the dot product of \vec{u} with \vec{v} . In the last coordinate, $\vec{u} \times \vec{v}$ is the cross product in \mathbb{R}^3 .

Let S^3 denote those elements $(s, \vec{u}) \in \mathbb{R}^4$ for which $s^2 + |\vec{u}|^2 = 1$. Show that S^3 is a group under the above multiplication. Show that S^3 is not an abelian group.

11. Short exact sequences

Show that following sequences do not split:

- (a) $\mathbb{Z} \xrightarrow{\times n} \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ for $n \neq 0, \pm 1$.
- (b) $\mathbb{Z}/2\mathbb{Z} \xrightarrow{\phi} \mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$ where $\phi([0]) = [0]$ and $\phi([1]) = [2]$.

12

If n and m are relatively prime (meaning they share no common divisors aside from 1) show that $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z} \cong \mathbb{Z}/(nm)\mathbb{Z}$.