
CHAPTER 33

Modules over PIDs

Exercise 33.1. Here are some opening exercises:

(1) Let F be a field and g ∈ F [t]. Show that g(x) = 0 if and only if
the polynomial t− x divides the polynomial g(t) in F [t]. (Hint: The
division algorithm.)

(2) Fix a commutative ring R. Fix a, b ∈ R.Show

(a) = (b)

iff a = ub for some unit u.
(3) Let R be a commutative ring. Prove a unit cannot be a zero divisor.

What is the contrapositive?
(4) Prove that any field is a PID.

Answer:

(1) This is certainly true for deg g = 0, for g(x) = a0 = 0 if and only if
g = 0, while (t− x)0 = 0, so t− x divides g.

Now assume deg g ≥ 1. Use the division algorithm:

g = (t− x)q + r.

Then

g(x) = (x− x)q(x) + r(x) = 0q(x) + r(x) = r(x).

This means r(x) = 0. But deg r < deg(t− x), meaning r(x) must be
a degree 0 polynomial for which x is a root—this means r = 0 as a
polynomial, and

g = (t− x)q.

(2) Since a = ub, we see that a ∈ (b). Thus (a) ⊂ (b). (For if y = ra,
then y = rub = (ru)b, so any multiple of a is a multiple of b.)

Likewise, u−1a = b, so we see that b ∈ (a), thus (b) ⊂ (a).
(3) If x is a unit, xy = 1 for some y ∈ R. Then for any a, axy = a1 = a.

On the other hand if ax = 0, we also have that axy = 0y = 0. Hence
a = 0, so x cannot be a zero divisor.

(4) A commutative ring is a field if and only if its only ideals are {0} and
R itself. Well, {0} is principal since {0} = (0). Also, R = (1) for any
ring.
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58 33. MODULES OVER PIDS

So we only need to show that there are no zero divisors aside from
zero. But in a field, every non-zero element is a unit, so there are no
zero divisors.

1. Review, and fixing a proof

Last time, we stated in class

Theorem 33.2 (Factorization for PIDs). Let R be a PID. Then for any non-
zero element x ∈ R, there exists a finite collection of distinct prime elements
p1, . . . , pk ∈ R so that

x = pn1
1 pn2

2 . . . pnk
k
, ni ≥ 1

But what did the proof actually show? We showed that if we keep de-
composing an element f into products, the process has to stop at some point.
But there was a mistake in the proof, because the chain of thought is actually
incorrect. A great teaching moment, when the teacher makes the mistake.

The core of what we proved last time was the following:

Proposition 33.3. Fix a principal ideal domain R. Assume we have an
increasing sequence of ideals

I1 ⊂ I2 ⊂ . . . .

Then there is some finite n for which In = In+1 = . . ..

Proof. As a reminder, the way this went was as follows: Let I =
�

Ij.
Since R is a PID, there is a single element a that generates I, so I = (a). But
a ∈ I, which means a ∈ In for some finite n (by definition of union). Then
we’d have

(a) ⊂ In ⊂ (a)

so In = (a). But if In ⊂ In+j ⊂ (a) = In, we have that In = In+j for all j. �

Remark 33.4. Any commutative ring R satisfying this ascending chain

condition—that is, the property that any ascending chain of ideals must terminate—
is called Noetherian, after Emmy Noether (who is arguably the most famous
woman in mathematics and physics). If you take any kind of course in alge-
braic geometry, you’ll see plenty more of Noetherian rings.

Correct proof of theorem. Let x ∈ R, x �= 0. If x is a prime, we’re
finished: Set p1 = x.

Otherwise, x = a1b1 for some non-unit elements a1, b1 ∈ R. If both are
prime, we’re done. Let’s say a1 isn’t prime. Then a1 = a2b2, where a2, b2 are



1. REVIEW, AND FIXING A PROOF 59

not units. What does this mean?

a1 ∈ (a2)

so (a1) ⊂ (a2).
Note importantly that this inclusion is proper, so (a1) �= (a2). Why is that?

Otherwise, we would have

(a2) ⊂ (a1) =⇒ a1 = ca1b2 = a1cb2 =⇒ (1− cb2)a1 = 0. =⇒ (1− cb2) = 0

so b2 would be a unit. (Note that in the last =⇒ , we’re using the fact that
R is a domain.)

And if a2 is not prime, we would again have a2 = a3b3, with a proper
inclusion (a2) ⊂ (a3). Going on in this way, each time we write ai = ai+1bi+1,
we have a chain of inclusions

. . . ⊂ (ai) ⊂ (ai+1) ⊂ . . . .

But as we saw before, at some point (an) must equal (an+1), which violates the
proper inclusion property, for then (an+1) ⊂ (a) ⊂ (an) =⇒ (an+1) = (an).

What this means is that some an has to be prime at a finite stage n.
What we’ve shown is:
(*) every non-zero element x can be written

x = p1y1

where p1 is prime.
But we may have no control on y1. Now we need to show that x can

be written as a finite product of primes. (Repeating the above process, it’s
not clear that we get to finitely many primes in finite time!) Well, if y1 isn’t
irreducible, we can write

y1 = p2y2
where p2 is a prime (by using (*) above). If y2 isn’t irreducible, we can go on
in this way, and we have again a chain

(x) ⊂ (y1) ⊂ (y2) ⊂ . . .

of proper inclusions. If yn isn’t a prime at some point we have a contradiction,
since there can be no infinite ascending chain of ideals like this in a PID (as
we’ve shown above). So set pn+1 = yn, and we have written

x = p1y1
= p1p2y2
= . . .

= p1p2 . . . pnyn
= p1p2 . . . pnpn+1

which shows any element x can be written as a product of primes. �
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Chit-chat 33.5. There are other things I should prove, like unique factorization—
in fact, if one writes

x = upn1
1 . . . pnk

k

where u is a unit and pi are primes, we can guarantee that each pi is rela-
tively prime to each other, and that the pi are unique up to re-ordering and
multiplication by units. But we won’t go into that.

2. Modules over PIDs

The following is a theorem we won’t prove, but I’ll post further notes on
the proof of it. It shows that every finitely generated module over a PID has a
very simple form. (If all rings had modules as simple as this, the world would
be a wonderful place.)

Theorem 33.6 (Classification of finitely generated modules over PIDs). Let
R be a PID, and let M be a finitely generated R-module. Then there exists
a finite collection of primes p1, . . . , pk ∈ R, with pi possibly equaling pj, and
numbers n0, . . . , nk such that

M ∼= Rn0 ⊕R/(pn1
1 )⊕R/(pn2

2 )⊕ . . .⊕R/(pnk
k
).

Moreover, this decomposition is unique up to re-ordering and unit multiples
of pi.

Remark 33.7. What do we explicitly mean by uniqueness? Given some
other decomposition

M ∼= Rm0 ⊕R/(qm1
1 )⊕ . . .⊕R/(q

mj

j
)

where each qi is a prime, then we have

(1) m0 = n0,
(2) j = k, and
(3) There is some re-ordering of the i so that ni = mi, and that pi and qi

are unit multiples of each other.

Chit-chat 33.8. I emphasize that pi could equal pj for i �= j. In other words,
modules aren’t like numbers—they don’t admit unique prime factorizations in
which p · . . . · p can be grouped into pk; the repetition of primes is important.

Example 33.9 (R = F a field). If F is a field, what are the prime elements?
There are no prime elements, since prime elements are in particular non-zero,
non-unital elements. So every finitely generated module over F must be of the
form

M ∼= F n0
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which is just the statement that every finitely generated F -module admits a
finite basis. n0 is the dimension of the vector space.

Example 33.10 (R = Z). What are the primes of Z? Numbers of the form
±p for p a prime number. (Note that (p) = (−p).) So the above theorem is
stating that any finitely generated Z-module—that is, any finitely generated
abelian group—is of the form

M ∼= Zn0 ⊕ Z/pn1
1 Z⊕ . . .⊕ Z/pnk

k
Z.

Uniqueness means, for example, that

Z/2Z⊕ Z/2Z (p1 = p2 = 2, while n0 = 0, n1 = n2 = 1. )

and
Z/4Z (p1 = 2, while n0 = 0, n1 = 2. )

are not isomorphic Z-modules (i.e., not isomorphic abelian groups). This, we
already knew—for instance, Z/4Z is cyclic, while the former group is not.
Note that the former group is also an example of when pi = pj for i �= j.

Example 33.11. Again let R = Z. We can classify every abelian group of
order 8 now:

n0 p1, p2, . . . , pk n1, . . . , nk

Z/8Z 0 2 3
Z/4Z⊕ Z/2Z 0 2, 2 2, 1

Z/2Z⊕ Z/2Z⊕ Z/2Z 0 2, 2, 2 1, 1, 1

Example 33.12. As another example, let M = Z/6Z. This is not of the
form stated in the theorem. In fact, M is isomorphic to

Z/2Z⊕ Z/3Z
as you’ve proven in homework.

3. When the PID is a polynomial ring

The only other PID we’ve talked about is R = F [t]. What are the primes
of F [t]? In general, this is a hard question. A first prerequisite for f to be
a prime is that it have no roots in F—otherwise, as we saw earlier, f can be
factored by a linear polynomial, which is not a unit in F [t].

But there are a class of fields in which you can characterize the irreducible
elements of F [t] easily:

Definition 33.13. A field F is called algebraically closed if every polynomial
f ∈ F [t] has a root.
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The obvious example is F = C. The perhaps surprising theorem is:

Theorem 33.14. Any field F admits an injective ring homomorphism into
an algebraically closed field.

Remark 33.15. Note that not every field F admits an injective ring homo-
morphism into C. For instance, if F = Z/2Z, the multiplicative unit 1 satisfies
the property that 1 + 1 = 0. Any ring homomorphism φ : Z/2Z → C must
satisfy the property that φ(1) + φ(1) = φ(0), which is impossible, since a ring
homomorphism must also satisfy the constraint that φ(1) = 1C.

In other words, there must be some other field, other than C, which has a
root to any polynomial, and which admits an injective map from Z/2Z. Seems
mysterious, doesn’t it?

We’ll talk about this a little bit more later. Regardless, your mind can
have in mind C for now.

Proposition 33.16. If F is algebraically closed, the only irreducible ele-
ments of F [t] are (non-zero) linear polynomials.

Proof. We know already that any non-zero linear polynomial is irreducible—
for any pair f = ab either a or bmust have degree 0, meaning any factorizations
of f involves a unit.

On the other hand, if f has degree ≥ 2, we know f has a root by definition
of algebraically closed field, so we can always write

f = (t− x)q

for some q with degree deg f − 1. Neither t− x nor q can be units since they
are not constant polynomials (they have non-zero degree) so no polynomial of
higher degree can be a prime. �

Corollary 33.17. If F is algebraically closed, then any finitely generated
module over F is isomorphic to

F [t]n0 ⊕ F [t]/(t− λ1)
n1 ⊕ . . .⊕ F [t]/(t− λk)

nk

for some choice of elements λi ∈ F and integers n1, . . . , nk ≥ 1.
Why might this be helpful for us? Well, a good example of an F [t]-module

is an F -vector space V together with a linear map A : V → V . In other words,
this helps us classify linear maps A!

You’ve already seen ways to think about linear maps A, by using change-
of-bases, and eigenvectors and all that. We’ll see that this decomposition gives
us a powerful change-of-basis next class.


