
Lecture 32: PIDs–or, similarities between Z and F [t].

Exercise 32.1. Let R be a commutative ring, and let x1, . . . , xn be a finite
collection of elements. Define for yourself the ideal generated by x1, . . . , xn.
Prove that it’s an ideal.

Answer: Since we have n elements in R, they uniquely defined a module
homomorphism

R⊕n
→ R.

We let the ideal generated by x1, . . . , xn be the image of this homomorphism.
By homework, the image of R is a submodule of R, and by definition, a
submodule of R is an ideal.

Definition 32.2. We let (x1, . . . , xn) ⊂ R denote the ideal generated by the
elements x1, . . . , xn. Explicitly, it is the set of all elements in R that can be
expressed as

a1x1 + . . .+ anxn

for ai ∈ R.

Chit-chat 32.3. Let F be a field. The point of this lecture is to show that
Z and F [t] are very similar rings. This may be a surprising statement at first
glance, but we’ll see what we mean. Let me say one important thing: There
is an analogy between

(1) The size of an integer (or the log of the size of an integer), and
(2) The degree of a polynomial.

For instance, for any two integers x, y ∈ Z, we have that

log(|xy|) = log |x|+ log |y|.

And for any two polynomials in F [t], we have that

deg(fg) = deg f + deg g.

The size of integers allows us to use induction when we want to prove state-
ments about all integers. Though we’ve taken log above, log preserves order,
so the multiplicative property above is still useful for inductive proofs. Like-
wise, the degree of a polynomial will allow us to prove statements about all
polynomials by induction.
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1. Review

Let me make some preliminary definitions, one of which is new.

Definition 32.4. Let R be a commutative ring. A zero divisor is an element
x ∈ R such that

xy = 0

for some y �= 0.

Example 32.5. Here are some simple examples:

(1) If R has more than one element, then 0 is always a zero divisor, since
0y = 0 for any y ∈ R. (R needs to have more than one element to
guarantee that y can be chosen to be non-zero.)

(2) If R = Z/nZ where n is not prime, then choose two integers x, y so
that xy = n, where neither x nor y is ±1. Then x and y are zero
divisors in R, for x �= 0, y �= 0, but xy = n = 0.

And from last time:

Definition 32.6. A commutative ring R is called a principal ideal domain,
or PID, if

(1) If I ⊂ R is any ideal, then I = (x) for some x ∈ R.
(2) The only zero divisor in R is 0.

Remark 32.7. The word domain means there are no non-zero zero divisors.
Sometimes you’ll hear the term integral domain, which means a commutative
ring with no non-zero zero divisors.

The “principal ideal” part of the term means that every ideal is “principal”—
i.e., generated by one element.

Example 32.8. By far these are the two most important examples of prin-
cipal ideal domains:

(1) R = Z. We know any subgroup of Z is of the form nZ for some n.
Moreover, nZ = (n), since by definition, any element of nZ is of the
form an for some integer a. Since any ideal is in particular a subgroup
of R, we have that every ideal in Z is principal.

(2) R = F [t] for F a field. Then F [t] is a PID by a theorem I stated last
time, which I now recall:

Theorem 32.9. Let F be a field. Then any ideal I ⊂ F [t] is generated by a
single element.

This is a problem in your take-home midterm.
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2. The Euclidean algorithm

One major reason that Z and F [t] are such similar rings is that they both
have a division-remainder algorithm, or the Euclidean algorithm. Recall the
following statement, which we have known since the cradle:

Theorem 32.10 (Divisions and remainders for integers). Let x be an integer,
and n any other integer. Then there exists integers q, r such that

x = nq + r

where 0 ≤ r < n.

Remark 32.11. We used this heavily when we proved that the only sub-
groups of Z are of the form nZ.

The following is the analogous statement for polynomials, where (log of)
the size of an integer is replaced by the degree of a polynomial.

Theorem 32.12. Let F be a field, and g ∈ F [t] a polynomial with coef-
ficients in F . Then for any polynomial f ∈ F [t], there exists polynomials
q, r ∈ F [t] so that

g = fq + r

where 0 ≤ deg r < deg f .

Remark 32.13. That is, we can always divide a polynomial g by another
polynomial f , and look at the remainder.

Chit-chat 32.14. I’ll go over the proof of this. I think this isn’t a standard
part of high school math, and a lot of people only learn this through math
competitions. I, for instance, never learned this until I was in college!

Proof. If deg g < deg f , we are finished, simply by setting

g = f0 + g.

That is, we can’t divide a smaller-degree polynomial by a bigger-degree poly-
nomial, so we just end up dividing trivially, and the remainder is g itself. So
we need to prove the case when deg g ≥ deg f .

We proceed by induction on the degree of the polynomial g. That is, having
fixed f , we have seen that the statement is true for all g with deg g < deg f
(the base cases). We will assume it true for all g with deg g ≤ e−1, and prove
it true for those g with deg g = e.

Let

f = adt
d + . . .+ a1t+ a0, ad �= 0
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and
g = bet

e + . . .+ b1t+ b0, be �= 0

so that f and g are degree d and e polynomials, respectively. Since both
ad, be ∈ F are non-zero, and since F is a field, there exists a unique number
qe−d so that

qe−dad = be.

So consider the polynomial

qe−df = bet
d + qe−dad−1t

d−1 + . . .+ qe−da1t+ qe−da0.

Multiply this polynomial by te−d to obtain

qe−dt
e−df = bet

e + qe−dad−1t
e−1 + . . . qe−da1t

e−d+1 + qe−da0t
e−d.

Note that this polynomial has the same degree as g, and the same highest-
degree coefficient be that g has. So we can subtract it from g to obtain a
lower-degree polynomial, g� := g− qe−dte−df . By induction on degree, there is
a polynomial Q and a polynomial r so that

g� = Qf + r

where r has degree less than f . Then we can write

g = (qe−dt
d−e)f + g − (qe−dt

d−e)f

= (qe−dt
d−e)f + g�

= (qe−dt
d−e)f +Qf + r

= (qe−dt
d−e +Q)f + r

so set
q = qe−dt

d−e +Q,

and we have
g = qf + r

where deg r < deg f . We are finished. �

3. Primes and factorization in PIDs

We’ve used the word “unit” in passing, but I want to write it down for the
record.

Definition 32.15. An element x ∈ R is called a unit if there is some y ∈ R
for which

xy = yx = 1R.
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Example 32.16. The units of Z are the elements ±1. Likewise, the units of
a field F are the non-zero elements of F .

Proposition 32.17. Let R = F [t]. Then the units of R are the constant,
non-zero polynomials.

Proof. If fg = 1, we must have that deg f + deg g = deg 1 = 0. Hence
both deg f and deg g must be zero—i.e., f and g must be constant. But
constant polynomials form a subring F ⊂ F [t], so two constant polynomials
can multiply to one if and only if they are non-zero (since any non-zero element
in F has a multiplicative inverse). �

Now I want to generalize the notion of being a prime in Z to arbitrary
rings.

Definition 32.18. An element x ∈ R is called prime, or irreducible, if

(1) x is not a unit, and
(2) the only elements dividing x are units, or unit multiples of x. Explic-

itly, if
x = ab

for some a, b ∈ R, then either a or b must be a unit.

Example 32.19. Here are some examples of primes in rings:

(1) Let R = Z. If x is a prime number, or the negative of a prime number,
then the only numbers dividing x are ±1 and ±x. Necessarily, if
x = ab, then either a or b must equal ±1, which are the units of
Z. Hence the prime elements of Z (under this definition) are prime
numbers or their negatives. Note that zero is not a unit.

(2) Let R = F [t]. Then the only units of F [t] are constant, non-zero
polynomials. So f is a prime, or irreducible, if and only if the only
polynomials dividing f have equal degree to f , or are constant poly-
nomials.

(3) As a subexample, if deg f = 1, then f is irreducible. For if gh = f ,
then deg g + deg h = deg f = 1. But this means that one of g or h
must have degree 0. That is, any linear polynomial is irreducible.

Theorem 32.20 (Unique factorization for PIDs). Let R be a PID. Then for
any non-zero element x ∈ R, there exists a finite collection of distinct prime
elements p1, . . . , pk ∈ R so that

x = pn1
1 pn2

2 . . . pnk
k
, ni ≥ 1

and so that no pi is a unit multiple of pj for i �= j. The ni are unique, and the
elements pi are unique up to multiplication by units and reordering.
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Example 32.21. As a consequence:

(1) If R = Z, recall that a prime element of R is simply a prime number,
or a negative of a prime number. Thus the theorem is saying that any
integer x ∈ Z can be written as a product of powers of primes:

x = pn1
1 pn2

2 . . . pnk
k
.

If each pi is taken to be a positive prime number, this is often called
the prime factorization of x. In context of the theorem, however, note
we could replace p1 and p2 by −p1 and −p2, and we would still be
able to express x as a product of powers of primes. In this sense, the
choice of the pi is only unique up to multiplying by units. Of course,
for the integers, we can choose to order each pi so that the pi < pi+1

and we have a preferred ordering, but this is not true in general PIDs.
(2) If R = F [t], this is saying that every polynomial can be written as a

product of irreducible polynomials pi:

f = pn1
1 pn2

2 . . . pnk
k
.

(3) As an example, if F = C, then any polynomial can be written as a
product of linear polynomials:

f = (t− α1)
n1 . . . (t− αk)

nk .

I caution you that for other fields, we may not be able to decompose
f into linear polynomials. See your midterm.

Proof of the Theorem. Let f ∈ R. If f is irreducible, we are finished,
just by writing p1 = f and

f = p1.

Otherwise, f factors into a product

f = a1b1

where a1, b1 are not unit multiples of f . This means that f is contained in
the ideal (a1, b1) generated by a1 and b1. If each of a1 and b1 is prime, we
are finished; otherwise we can factor them further so a1 = c2d2 and b = e2f2.
This means that f is in the ideal generated by (c2, d2, e2, f2). We see this
process might go on indefinitely, and we might keep dividing up elements
further without ever reaching a prime element. However, since R is a PID,
each of these ideals—(f), (a1, b1), (c2, d2, e2, f2), etc.—are generated by a single
element. So let’s let gn denote the element that generates the ideal we obtain
at the nth step of this subdivision process. We have that

(f) = (g0) ⊂ (g1) ⊂ (g2) ⊂ . . . .
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Well, note that

J :=
∞�

i=0

(gi)

is an ideal again! (Try proving this yourself.) Since R is a PID, this must also
be generated by a single element:

J = (g)

but g ∈ J if and only if g ∈ (gn) for some finite n, by definition of union. This
means that

(gn) ⊂ J = (g) ⊂ (gn).

That is,
(gn) = J

so the subdivision process stops at some finite n. This means that f can be
written as a product of primes

f =
�

pi.

�


