
Lecture 30: Vector spaces and determinants.

1. Some preliminaries and the free module on 0 generators

Exercise 30.1. Let M be a left R-module. Show that

r0M = 0M , and r(−x) = −rx.

Proof. By homework, an R-action on M is the same thing as a ring ho-
momorphism R → End(M). In particular, every r ∈ R determines an abelian
group homomorphism. Hence scaling by r preserves the additive identity of
M , and additive inverses.

If you prefer a more computational proof, you can observe:

r0M + r0M = r(0M + 0M) = r0M .

So by cancellation for abelian groups, we can subtract r0M from both sides to
obtain

r0M = 0M .

So

r(−x) + rx = r(−x+ x) = r0M = 0M

which shows that r(−x) is the additive inverse to rx. �

Remark 30.2. We know what R⊕n is for n ≥ 1. But what about n = 0?
Well, the proposition from last time tells us that we should look for an

R-module R⊕0 such that there is a bijection

HomR(R
⊕0,M) ∼= MapSets(∅,M).

But there is one and only one function from the empty set to any set; so we
must look for a module R⊕0 which has one and only one module homomor-
phism to any M . The only such module is the zero module—i.e., the trivial
abelian group with the module action r0 = 0.
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2. Review of last time; dimension

Last time we studied finitely generated modules over a field F . We proved

Theorem 30.3. Let V be a vector space over F—i.e., a module over F . If
y1, . . . , ym is a linearly independent set, and x1, . . . , xn is a spanning set, then
m ≤ n.

We stated two corollaries:

Corollary 30.4. Any two bases of a finitely generated F have the same
number of elements in them.

Definition 30.5. Let V be a finitely generated F -module—i.e,. a finitely
generated vector space. We call such a V a finite-dimensional vector space,
and define the dimension of V

dimF V

to be the number of elements in any basis for V .

Example 30.6. The 0-dimensional vector space is the module given by the
trivial abelian group, M = {0}.

The second corollary was:

Corollary 30.7. If M is a finitely generated vector space, any linearly in-
dependent collection w1, . . . , wm can be completed to a basis—that is, we can
find wm+1, . . . , wn so that the resulting collection w1, . . . , wn is both linearly
independent and spanning.

Chit-chat 30.8. What are we going to do? Well, you have studied matrices
whose entries are real numbers before. You did a lot with them—multiply
them, add them, and also figure out when they’re invertible. I claim that
almost everything you could do with real matrices, you can pretty much do
with matrices with coefficients in any field.

3. More corollaries

Corollary 30.9. Any finitely generated module over a field F is isomorphic
to F n for some n.

Proof. Begin with the linearly independent set 0 and complete to a basis.
A basis defines an isomorphism from F n to your module. �
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Remark 30.10. This is definitely not true for R-modules if R is not a field—
as we saw last time, Z/nZ is a Z-module but doesn’t even admit a linearly
independent, non-empty collection of elements (let alone a basis).

Corollary 30.11. If V � ⊂ V is a subspace,

dimV � = dimV ⇐⇒ V = V �.

Proof. One implication is obvious. For the other direction, let y1, . . . , yn
be a basis for V �. Since these vectors are linearly independent, they can be
completed to a basis in V by one of the corollaries above. But this basis must
have exactly n elements in it by the definition of dimension—in other words,
the yi are already a basis. �

Corollary 30.12. Let V � ⊂ V be a subspace. Then dimV � + dimV/V � =
dimV .

Proof. Let v1, . . . , vdimV � be a basis for V �. Let u1, . . . , udimV/V � be a bsis
for V/V �. Then choosing representatives ui for ui, the set

v1, . . . , vdimV � , u1, . . . , udimV/V �

is a basis for V . It obviously spans since for each a ∈ V , a is a linear combi-
nation of ui, hence a is in the V �-orbit of some linear combination of the ui.
It is linearly independent because if we have that

0 = a1v1 + . . . adimV �vdimV � + b1u1 + . . .+ bdimV/V �udimV/V �

then

0 = a1v1 + . . . adimV �vdimV � + b1u1 + . . . bdimV/V �udimV/V � .

The ai terms go to zero since vi = 0, hence we get an equation saying a linear
combination of the ui is zero. This means each bi must be zero by linear
independence of the ui. The original equation then says that 0 =

�
aivi, so

by linear independence of the vi, the ai must be zero. �

Corollary 30.13 (Rank-nullity theorem). Let f : V → W be a map of
F -modules and assume V is finitely generated. Then dimker f + dim im f =
dimV .

Proof. By the first isomorphism theorem, we know there is a group iso-
morphism V/ ker f ∼= im f . But this homomorphism is also an F -module map,
as you can check by hand. Thus im f ∼= V/ ker f . �
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Corollary 30.14 (Criterion for isomorphisms). Let f : V → W be a linear
map between finite-dimensional vector spaces. Then f is an isomorphism if
and only if f is injective and dimV = dimW .

Proof. By the rank-nullity theorem, the image of f has dimension V since
f is injective. �

4. The take-away

The take-away from all the above is how powerful the notion of dimension
is. Whether your field be something familiar like R, or something foreign (for
now) like Z/pZ; whether the linear map be something as familiar as a matrix,
or something that you didn’t realize was linear like evaluating polynomial
functions (see homework), we have a powerful way of studying linear maps.

5. Determinants

The other powerful tool we have from linear algebra is the notion of de-
terminant. Well, the determinant only required a notion of multiplying by -1
(taking additive inverses), multiplying entries of a matrix, and adding things
together. So we should be able to define a determinant for any matrix with
coefficients in a ring R.

As it turns out, some formulas may not hold true if the ring R isn’t
commutative—the order of multiplication is important—so we’ll restrict our-
selves to commutative rings.

Definition 30.15. Let R be a commutative ring. A k × k matrix in R is a
collection of elements

Aij ∈ R

where i ∈ 1, . . . , k and j ∈ 1, . . . , k. We’ll represent a matrix by the symbol

A = (Aij).

Example 30.16. A 3× 3 matrix in R can be drawn in the usual way:



A11 A12 A13

A21 A22 A23

A31 A32 A33



 .
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Definition 30.17. The ring of k × k matrices in R, denoted Mk×k(R), has
addition given by

(Aij) + (Bij) = (Aij +Bij) (Aij)(Bij) = (
k�

l=1

AilBlj).

That is, addition is the usual entry-by-entry addition. In the product, the
i, jth entry is given by taking the jth column of B and pairing it with the ith
row of A.

Definition 30.18 (Cofactor matrix). Let A be a k × k matrix. The (i.j)th
cofactor matrix of A is the matrix obtained by deleting the ith row and jth
column of A. When A is implicit, we will write

Ci,j

for the (k − 1)× (k − 1) matrix given by the (i, j)th cofactor matrix of A.

Definition 30.19. The determinant of a 1 × 1 matrix in R is the unique
element A11 of the matrix.

Inductively: Let A be a k×k matrix. Then the determinant of A is defined
to be the sum

detA = A11 detC1,1 − A21 detC2,1 + . . .+ (−1)1+kAk1 detCk,1.

Using summation notation,

detA :=
k�

i=1

(−1)i+1Ai1 detCi,1.

This defines a function
det : Mk×k(R) → R.

Example 30.20. If A is a 2× 2 matrix,

det(A) = A11A22 − A12A21.

We won’t prove the following theorems, but the same proofs you did for
real numbers carries through:

Theorem 30.21. Let A and B be k × k matrices. Then

det(A) det(B) = det(AB)

and
det(AT ) = det(A).
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Theorem 30.22. Let adj(A) be the k×k matrix whose (i, j)th entry is given
by

(−1)i+j detCj,i.

Then
A · (adjA) = (adjA) · A = detA · I

where detA ·I is the diagonal matrix with entries given by the element detA ∈

R.

Remark 30.23. In case you haven’t seen this last statement before, let
me give a small idea of how the proof goes. The (i, j)th entry of the first
multiplication is given by

k�

l=1

Ail(adjA)lj =
k�

l=1

Ail(−1)j+l detCj,l.

So for instance, the (1, 1) entry is precisely the definition of the determinant of
A. By using properties about swapping rows only changing the determinant
by a sign, you can prove that every diagonal entry is the determinant of A.

For the off-diagonal entry, you observe that the summation above becomes
the determinant for a matrix with two equivalent rows; hence equals zero.

Corollary 30.24. Let A ∈ Mk×k(R). Then A is an invertible matrix if and
only if detA ∈ R has a multiplicative inverse.

Proof. Let B = detA−1 adjA. Then

BA = detA−1 adjA · A = detA−1 detA · I = I.

Likewise for BA. �

Example 30.25. If A is a matrix with only integer entries, then there exists
an inverse matrix with integer entries if and only if detA = ±1.

Example 30.26. Let A be a matrix with entries in Z/nZ. It is invertible if
and only if its determinant is relatively prime to n.


