Lecture 29: Free modules, finite generation, and bases for vector spaces

1. Universal property of free modules

Recall:
Definition 29.1. Let R be a ring. Then the direct sum module

$$
R^{n}:=R \oplus \ldots \oplus R
$$

is called the free R-module of rank n.
Chit-chat 29.2. Why is this called a free R-module? Behold:
Proposition 29.3. Let M be an R-module. Then any ordered n-tuple of elements $x_{1}, \ldots, x_{n} \in M$ uniquely determines an R-module homomorphism

$$
X: R^{n} \rightarrow M
$$

given by

$$
(0, \ldots, 0,1,0, \ldots, 0) \mapsto x_{i}
$$

where the 1 is in the i th coordinate.
Remark 29.4. This is the same property as for the free group on n generators: Any ordered n-tuple of elements of a group G determines a unique map from F_{n} to G.

Proof. Given $\left(x_{1}, \ldots, x_{n}\right)$, define $X: R^{n} \rightarrow M$ by

$$
X\left(a_{1}, \ldots, a_{n}\right):=a_{1} x_{1}+\ldots+a_{n} x_{n} \in M
$$

This is a group homomorphism because

$$
\begin{aligned}
X\left(\left(a_{1}, \ldots, a_{n}\right)+\left(b_{1}, \ldots, b_{n}\right)\right) & =\left(a_{1}+b_{1}\right) x_{1}+\ldots\left(a_{n}+b_{n}\right) x_{n} \\
& =\left(a_{1} x_{1}+\ldots+a_{n} x_{n}\right)+\left(b_{1} x_{1}+\ldots b_{n} x_{n}\right) \\
& =X\left(a_{1}, \ldots, a_{n}\right)+X\left(b_{1}, \ldots, b_{n}\right) .
\end{aligned}
$$

B※CTURE 29: FREE MODULES, FINITE GENERATION, AND BASES FOR VECTOR SPACES
where the middle equality is using the property of M being an R-module. This is also an R-module homomorphism because

$$
\begin{aligned}
X\left(r\left(a_{1}, \ldots, a_{n}\right)\right) & =X\left(\left(r a_{1}, \ldots, r a_{n}\right)\right) \\
& =\left(r a_{1}\right) x_{1}+\ldots+\left(r a_{n}\right) x_{n} \\
& =r\left(a_{1} x_{1}+\ldots a_{n} x_{n}\right) \\
& =r X\left(\left(a_{1}, \ldots, a_{n}\right)\right)
\end{aligned}
$$

Again, the penultimate equality is using the fact that M is an R-module.

2. Spans and linear independence and bases

Definition 29.5. Fix $x_{1}, \ldots, x_{n} \in M$.
(1) We say this collection spans M if the map $X: R^{n} \rightarrow M$ is a surjection.
(2) We say that this collection is linearly independent in M if the map $X: R^{n} \rightarrow M$ is an injection.
(3) We say this collection is a basis for M if X is both an injection and a surjection.

Chit-chat 29.6. You'll recognize these terms from linear algebra. And in terms of equations, these definitions mean exactly what you'd imagine:

Proposition 29.7. Let M be a left R-module, and let $x_{1}, \ldots, x_{n} \in M$ be an ordered collection.
(1) The collection spans M if and only if for every $y \in M$, there exists a collection $a_{1}, \ldots, a_{n} \in R$ so that

$$
y=a_{1} x_{1}+\ldots+a_{n} x_{n} .
$$

(2) The collection is linearly independent if and only if the equation

$$
0=a_{1} x_{1}+\ldots+a_{n} x_{n}
$$

has one and only one solution: $\left(a_{1}, \ldots, a_{n}\right)=(0, \ldots, 0)$.
(3) The collection is a basis if and only if for any $y \in M$, the equation

$$
y=a_{1} x_{1}+\ldots+a_{n} x_{n}
$$

has one and only one collection $\left(a_{1}, \ldots, a_{n}\right)$ solving it.
Proof. The first is the definition of surjection. The latter claim follows because a homomorphism is injective if and only if the kernel is trivial, and $(0, \ldots, 0) \in R^{n}$ is the additive identity of R^{n}. The last claim is the definition of a bijection.

Definition 29.8. We say that a module is finitely generated if there is some number $n \in \mathbb{Z}_{\geq 0}$ and a surjective R-module homomoprhism $R^{n} \rightarrow M$.

Chit-chat 29.9. This is also in analogy to groups. A group G is finitely generated if and only if there is some finite collection of elements g_{i} such that all other elements can be expressed as products of g_{i} and their inverses. Likewise, M is finitely generated if there is a finite collection x_{i} such that every element of M can be obtained by taking linear combinations of x_{i}.

Non-example 29.10. Not every module over R admits a basis. This is in contrast to vector spaces. For example, if $R=\mathbb{Z}$ and $M=\mathbb{Z} / n \mathbb{Z}$, then for any $x \in M$, the equation

$$
a x=0
$$

has many solutions- a could equal $n, 2 n, \ldots$.
Take-away: Not every finitely generated R-module admits a basis.

3. Vector spaces and subspaces

Recall:
Definition 29.11. A commutative ring is called a field if $R-\{0\}$ is a group under multiplication.

Definition 29.12. Let F be a field. A module over F is called a vector space over F.

Definition 29.13. Let V be a vector space. Then a submodule of V is called a linear subspace of V.

4. Spanning sets are bigger than independent sets

The following is the most importance consequences of being a field, as opposed to a ring:

Theorem 29.14. Let F be a field, and let M be a vector space over F. If v_{1}, \ldots, v_{n} span and w_{1}, \ldots, w_{m} are linearly independent, then $n \geq m$.

Proof of the Theorem. Let y_{1}, \ldots, y_{m} be linearly independent, and let v_{1}, \ldots, v_{n} be spanning. By re-ordering v_{i} if necessary, we can assume that

$$
y_{1}=a_{1} v_{1}+\ldots+a_{n} v_{n}
$$

for $a_{1} \neq 0$. Then $y_{1}, v_{2}, \ldots, v_{n}$ is also spanning, for we can obtain v_{1} as a linear combination of the y_{1} and the v_{i}-just divide the above equation by $a_{1} \neq 0$ and rearrange terms.

Let $M_{1} \subset M$ be the submodule generated by y_{1}-i.e., the image of $R \rightarrow M$ defined by $1 \mapsto y_{1}$-and consider the quotient

$$
M / M_{1} .
$$

(You'll prove this is also an R-module - i.e., a vector space - in your homework.) Then $\overline{y_{2}}, \ldots, \overline{y_{m}}$ are still linearly independent, for a linear combination of them equals zero if and only if

$$
a_{1} y_{1}=a_{2} y_{2}+\ldots+a_{m} y_{m}
$$

for some $a_{1} \in F$, and such an equation can hold only when all the $a_{i}=0$, since the y_{i} are assumed linearly independent. Note $\overline{y_{1}}=0, \overline{v_{2}}, \ldots, \overline{v_{n}}$ are still spanning, so $\overline{v_{2}}, \ldots, \overline{v_{n}}$ is spanning. So we have $n-1$ vectors spanning M / M_{1}, and we have $m-1$ linearly independent vectors in it.

By repeating the trick above, if we have m linearly independent elements in a vector space spanned by n elements, we can obtain $m-k$ linearly independent elements in a quotient vector space spanned by $n-k$ elements. So which of these numbers will hit 0 first? If $n-k=0$ first, we are in a quotient vector space spanned by 0 elements - i.e., the zero vector space - so we must conclude $m-k=0$ as well, for there are no linearly independent vectors in the zero vector space. And in this case, $m=n$. If $m-k$ reaches zero before $n-k$ does, we have that $m \leq n$.

5. Corollaries

Corollary 29.15. If M is a finitely generated vector space, then any two bases of M have the same number of elements in it.

Proof. If the $\left\{v_{i}\right\}$ and $\left\{w_{i}\right\}$ above are both spanning and linearly independent, we have $n \geq m$ and $m \geq n$. Hence $m=n$.

Definition 29.16. Let M be a finitely generated vector space over F. Then the number of elements in a basis for M is called the dimension of M over F.

Remark 29.17. This is the single most important fact in linear algebra: That we have a notion of dimension. It took us thousands of years to know what we mean by an n-dimensional space, so don't take this lightly!

Corollary 29.18. If M is a finitely generated vector space, any linearly independent collection w_{1}, \ldots, w_{m} can be completed to a basis-that is, we can find w_{m+1}, \ldots, w_{n} so that the resulting collection w_{1}, \ldots, w_{n} is both linearly independent and spanning.

Proof. Since M is finitely generated, there is some N for which we have a surjection $F^{N} \rightarrow M$. So any set of linearly independent vectors must have size $\leq N$ by the theorem. If $X_{m}: F^{m} \rightarrow M$ is the map determined by w_{1}, \ldots, w_{m}, and if X_{m} is not surjective, choose an element w_{m+1} not in $\operatorname{im}\left(X_{m}\right)$. Note the
resulting collection w_{1}, \ldots, w_{m+1} is still linearly independent, for if

$$
a_{1} w_{1}+\ldots+a_{m+1} w_{m+1}=0
$$

then we have

$$
a_{1} w_{1}+\ldots+a_{m} w_{m}=-a_{m+1} w_{m+1}
$$

If $a_{m+1}=0$, by linear independence of the w_{i}, we know all $a_{i}=0$. On the other hand, if $a_{m+1} \neq 0$ we arrive at a contradiction by dividing:

$$
\frac{a_{1}}{-a_{m+1}} w_{1}+\ldots+\frac{a_{m}}{-a_{m+1}} w_{m}=w_{m+1} .
$$

The lefthand side is in the image of X_{m}, but w_{m+1} was chosen not to be.
So we have an injective homomorphism $X_{m+1}: F^{m+1} \rightarrow M$. If X_{m+1} is not surjective, we repeat the argument. It must become a surjective map at some $m+k \leq N$ by the theorem. So let k be the integer at which X_{m+k} first becomes a surjection. By the above argument, it is still an injection, so we have a basis determined by the generators w_{1}, \ldots, w_{m+k}.

Corollary 29.19. Any finitely generated module over a field F is isomorphic to F^{n} for some n.

Proof. Begin with the linearly independent set 0 and complete to a basis. A basis defines an isomorphism from F^{n} to your module.

Remark 29.20. This is definitely not true for R-modules if R is not a fieldafter all, any finite abelian group is a \mathbb{Z}-module, but any free \mathbb{Z}-module is the zero module or an infinite module.

Corollary 29.21. Let $V^{\prime} \subset V$ be a subspace. Then $\operatorname{dim} V^{\prime}+\operatorname{dim} V / V^{\prime}=$ $\operatorname{dim} V$.

Proof. Let $v_{1}, \ldots, v_{\operatorname{dim} V^{\prime}}$ be a basis for V^{\prime}. Let $\overline{u_{1}}, \ldots, \overline{u_{\operatorname{dim} V / V^{\prime}}}$ be a bsis for V / V^{\prime}. Then choosing representatives u_{i} for $\overline{u_{i}}$, the set

$$
v_{1}, \ldots, v_{\operatorname{dim} V^{\prime}}, u_{1}, \ldots, u_{\operatorname{dim} V / V^{\prime}}
$$

is a basis for V. It obviously spans since for each $a \in V, \bar{a}$ is a linear combination of $\overline{u_{i}}$, hence a is in the V^{\prime}-orbit of some linear combination of the u_{i}. It is linearly independent because if we have that

$$
0=a_{1} v_{1}+\ldots a_{\operatorname{dim} V^{\prime}} v_{\operatorname{dim} V^{\prime}}+b_{1} u_{1}+\ldots+b_{\operatorname{dim} V / V^{\prime}} u_{\operatorname{dim} V / V^{\prime}}
$$

then

$$
\overline{0}=a_{1} \bar{v}_{1}+\ldots a_{\operatorname{dim} V^{\prime}} \overline{v_{\operatorname{dim} V^{\prime}}}+b_{1} \overline{u_{1}}+\ldots b_{\operatorname{dim} V / V^{\prime}} \overline{\overline{\operatorname{dim} V / V^{\prime}}} .
$$

The a_{i} terms go to zero since $\bar{v}_{i}=0$, hence we get an equation saying a linear combination of the \bar{u}_{i} is zero. This means each b_{i} must be zero by linear
independence of the \bar{u}_{i}. The original equation then says that $0=\sum a_{i} v_{i}$, so by linear independence of the v_{i}, the a_{i} must be zero.

Corollary 29.22 (Rank-nullity theorem). Let $f: V \rightarrow W$ be a map of F-modules and assume V is finitely generated. Then $\operatorname{dim} \operatorname{ker} f+\operatorname{dim} \operatorname{im} f=$ $\operatorname{dim} V$.

Proof. By the first isomorphism theorem, we know there is a group isomorphism $V / \operatorname{ker} f \cong \operatorname{im} f$. But this homomorphism is also an F-module map, as you can check by hand. Thus $\operatorname{im} f \cong V / \operatorname{ker} f$.

