
Lecture 29: Free modules, finite generation, and bases

for vector spaces

1. Universal property of free modules

Recall:

Definition 29.1. Let R be a ring. Then the direct sum module

Rn := R⊕ . . .⊕R

is called the free R-module of rank n.

Chit-chat 29.2. Why is this called a free R-module? Behold:

Proposition 29.3. Let M be an R-module. Then any ordered n-tuple of
elements x1, . . . , xn ∈ M uniquely determines an R-module homomorphism

X : Rn
→ M

given by

(0, . . . , 0, 1, 0, . . . , 0) �→ xi

where the 1 is in the ith coordinate.

Remark 29.4. This is the same property as for the free group on n genera-
tors: Any ordered n-tuple of elements of a group G determines a unique map
from Fn to G.

Proof. Given (x1, . . . , xn), define X : Rn → M by

X(a1, . . . , an) := a1x1 + . . .+ anxn ∈ M.

This is a group homomorphism because

X((a1, . . . , an) + (b1, . . . , bn)) = (a1 + b1)x1 + . . . (an + bn)xn

= (a1x1 + . . .+ anxn) + (b1x1 + . . . bnxn)

= X(a1, . . . , an) +X(b1, . . . , bn).
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where the middle equality is using the property of M being an R-module. This
is also an R-module homomorphism because

X(r(a1, . . . , an)) = X((ra1, . . . , ran))

= (ra1)x1 + . . .+ (ran)xn

= r(a1x1 + . . . anxn)

= rX((a1, . . . , an))

Again, the penultimate equality is using the fact that M is an R-module. �

2. Spans and linear independence and bases

Definition 29.5. Fix x1, . . . , xn ∈ M .

(1) We say this collection spansM if the mapX : Rn → M is a surjection.
(2) We say that this collection is linearly independent in M if the map

X : Rn → M is an injection.
(3) We say this collection is a basis for M if X is both an injection and a

surjection.

Chit-chat 29.6. You’ll recognize these terms from linear algebra. And in
terms of equations, these definitions mean exactly what you’d imagine:

Proposition 29.7. Let M be a left R-module, and let x1, . . . , xn ∈ M be
an ordered collection.

(1) The collection spans M if and only if for every y ∈ M , there exists a
collection a1, . . . , an ∈ R so that

y = a1x1 + . . .+ anxn.

(2) The collection is linearly independent if and only if the equation

0 = a1x1 + . . .+ anxn

has one and only one solution: (a1, . . . , an) = (0, . . . , 0).
(3) The collection is a basis if and only if for any y ∈ M , the equation

y = a1x1 + . . .+ anxn

has one and only one collection (a1, . . . , an) solving it.

Proof. The first is the definition of surjection. The latter claim follows
because a homomorphism is injective if and only if the kernel is trivial, and
(0, . . . , 0) ∈ Rn is the additive identity of Rn. The last claim is the definition
of a bijection. �

Definition 29.8. We say that a module is finitely generated if there is some
number n ∈ Z≥0 and a surjective R-module homomoprhism Rn → M .
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Chit-chat 29.9. This is also in analogy to groups. A group G is finitely
generated if and only if there is some finite collection of elements gi such
that all other elements can be expressed as products of gi and their inverses.
Likewise, M is finitely generated if there is a finite collection xi such that every
element of M can be obtained by taking linear combinations of xi.

Non-example 29.10. Not every module over R admits a basis. This is in
contrast to vector spaces. For example, if R = Z and M = Z/nZ, then for
any x ∈ M , the equation

ax = 0

has many solutions—a could equal n, 2n, . . ..
Take-away: Not every finitely generated R-module admits a basis.

3. Vector spaces and subspaces

Recall:

Definition 29.11. A commutative ring is called a field if R− {0} is a group
under multiplication.

Definition 29.12. Let F be a field. A module over F is called a vector space

over F .

Definition 29.13. Let V be a vector space. Then a submodule of V is called
a linear subspace of V .

4. Spanning sets are bigger than independent sets

The following is the most importance consequences of being a field, as
opposed to a ring:

Theorem 29.14. Let F be a field, and let M be a vector space over F . If
v1, . . . , vn span and w1, . . . , wm are linearly independent, then n ≥ m.

Proof of the Theorem. Let y1, . . . , ym be linearly independent, and
let v1, . . . , vn be spanning. By re-ordering vi if necessary, we can assume that

y1 = a1v1 + . . .+ anvn

for a1 �= 0. Then y1, v2, . . . , vn is also spanning, for we can obtain v1 as a linear
combination of the y1 and the vi—just divide the above equation by a1 �= 0
and rearrange terms.

Let M1 ⊂ M be the submodule generated by y1—i.e., the image of R → M
defined by 1 �→ y1—and consider the quotient

M/M1.
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(You’ll prove this is also an R-module—i.e., a vector space—in your home-
work.) Then y2, . . . , ym are still linearly independent, for a linear combination
of them equals zero if and only if

a1y1 = a2y2 + . . .+ amym

for some a1 ∈ F , and such an equation can hold only when all the ai = 0,
since the yi are assumed linearly independent. Note y1 = 0, v2, . . . , vn are still
spanning, so v2, . . . , vn is spanning. So we have n− 1 vectors spanning M/M1,
and we have m− 1 linearly independent vectors in it.

By repeating the trick above, if we havem linearly independent elements in
a vector space spanned by n elements, we can obtainm−k linearly independent
elements in a quotient vector space spanned by n − k elements. So which of
these numbers will hit 0 first? If n − k = 0 first, we are in a quotient vector
space spanned by 0 elements—i.e., the zero vector space—so we must conclude
m − k = 0 as well, for there are no linearly independent vectors in the zero
vector space. And in this case, m = n. If m − k reaches zero before n − k
does, we have that m ≤ n. �

5. Corollaries

Corollary 29.15. If M is a finitely generated vector space, then any two
bases of M have the same number of elements in it.

Proof. If the {vi} and {wi} above are both spanning and linearly inde-
pendent, we have n ≥ m and m ≥ n. Hence m = n. �

Definition 29.16. Let M be a finitely generated vector space over F . Then
the number of elements in a basis for M is called the dimension of M over F .

Remark 29.17. This is the single most important fact in linear algebra:
That we have a notion of dimension. It took us thousands of years to know
what we mean by an n-dimensional space, so don’t take this lightly!

Corollary 29.18. If M is a finitely generated vector space, any linearly
independent collection w1, . . . , wm can be completed to a basis—that is, we can
find wm+1, . . . , wn so that the resulting collection w1, . . . , wn is both linearly
independent and spanning.

Proof. Since M is finitely generated, there is some N for which we have a
surjection FN → M . So any set of linearly independent vectors must have size
≤ N by the theorem. If Xm : Fm → M is the map determined by w1, . . . , wm,
and if Xm is not surjective, choose an element wm+1 not in im(Xm). Note the
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resulting collection w1, . . . , wm+1 is still linearly independent, for if

a1w1 + . . .+ am+1wm+1 = 0

then we have
a1w1 + . . .+ amwm = −am+1wm+1.

If am+1 = 0, by linear independence of the wi, we know all ai = 0. On the
other hand, if am+1 �= 0 we arrive at a contradiction by dividing:

a1
−am+1

w1 + . . .+
am

−am+1
wm = wm+1.

The lefthand side is in the image of Xm, but wm+1 was chosen not to be.
So we have an injective homomorphism Xm+1 : Fm+1 → M . If Xm+1 is

not surjective, we repeat the argument. It must become a surjective map at
some m+ k ≤ N by the theorem. So let k be the integer at which Xm+k first
becomes a surjection. By the above argument, it is still an injection, so we
have a basis determined by the generators w1, . . . , wm+k. �

Corollary 29.19. Any finitely generated module over a field F is isomorphic
to F n for some n.

Proof. Begin with the linearly independent set 0 and complete to a basis.
A basis defines an isomorphism from F n to your module. �

Remark 29.20. This is definitely not true for R-modules if R is not a field—
after all, any finite abelian group is a Z-module, but any free Z-module is the
zero module or an infinite module.

Corollary 29.21. Let V � ⊂ V be a subspace. Then dimV � + dimV/V � =
dimV .

Proof. Let v1, . . . , vdimV � be a basis for V �. Let u1, . . . , udimV/V � be a bsis
for V/V �. Then choosing representatives ui for ui, the set

v1, . . . , vdimV � , u1, . . . , udimV/V �

is a basis for V . It obviously spans since for each a ∈ V , a is a linear combi-
nation of ui, hence a is in the V �-orbit of some linear combination of the ui.
It is linearly independent because if we have that

0 = a1v1 + . . . adimV �vdimV � + b1u1 + . . .+ bdimV/V �udimV/V �

then
0 = a1v1 + . . . adimV �vdimV � + b1u1 + . . . bdimV/V �udimV/V � .

The ai terms go to zero since vi = 0, hence we get an equation saying a linear
combination of the ui is zero. This means each bi must be zero by linear
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independence of the ui. The original equation then says that 0 =
�

aivi, so
by linear independence of the vi, the ai must be zero. �

Corollary 29.22 (Rank-nullity theorem). Let f : V → W be a map of
F -modules and assume V is finitely generated. Then dimker f + dim im f =
dimV .

Proof. By the first isomorphism theorem, we know there is a group iso-
morphism V/ ker f ∼= im f . But this homomorphism is also an F -module map,
as you can check by hand. Thus im f ∼= V/ ker f . �


