Lecture 29: Free modules, finite generation, and bases for vector spaces

1. Universal property of free modules

Recall:

Definition 29.1. Let R be a ring. Then the direct sum module

$$R^n := R \oplus \ldots \oplus R$$

is called the *free* R-module of rank n.

Chit-chat 29.2. Why is this called a free *R*-module? Behold:

Proposition 29.3. Let M be an R-module. Then any ordered n-tuple of elements $x_1, \ldots, x_n \in M$ uniquely determines an R-module homomorphism

$$X: \mathbb{R}^n \to M$$

given by

$$(0,\ldots,0,1,0,\ldots,0)\mapsto x_i$$

where the 1 is in the ith coordinate.

Remark 29.4. This is the same property as for the free group on n generators: Any ordered n-tuple of elements of a group G determines a unique map from F_n to G.

PROOF. Given (x_1, \ldots, x_n) , define $X : \mathbb{R}^n \to M$ by

$$X(a_1,\ldots,a_n) := a_1 x_1 + \ldots + a_n x_n \in M.$$

This is a group homomorphism because

$$X((a_1, \dots, a_n) + (b_1, \dots, b_n)) = (a_1 + b_1)x_1 + \dots (a_n + b_n)x_n$$

= $(a_1x_1 + \dots + a_nx_n) + (b_1x_1 + \dots + b_nx_n)$
= $X(a_1, \dots, a_n) + X(b_1, \dots, b_n).$

where the middle equality is using the property of M being an R-module. This is also an R-module homomorphism because

$$X(r(a_1, \dots, a_n)) = X((ra_1, \dots, ra_n))$$

= $(ra_1)x_1 + \dots + (ra_n)x_n$
= $r(a_1x_1 + \dots + a_nx_n)$
= $rX((a_1, \dots, a_n))$

Again, the penultimate equality is using the fact that M is an R-module. \Box

2. Spans and linear independence and bases

Definition 29.5. Fix $x_1, \ldots, x_n \in M$.

- (1) We say this collection spans M if the map $X : \mathbb{R}^n \to M$ is a surjection.
- (2) We say that this collection is *linearly independent* in M if the map $X: \mathbb{R}^n \to M$ is an injection.
- (3) We say this collection is a *basis* for M if X is both an injection and a surjection.

Chit-chat 29.6. You'll recognize these terms from linear algebra. And in terms of equations, these definitions mean exactly what you'd imagine:

Proposition 29.7. Let M be a left R-module, and let $x_1, \ldots, x_n \in M$ be an ordered collection.

(1) The collection spans M if and only if for every $y \in M$, there exists a collection $a_1, \ldots, a_n \in R$ so that

$$y = a_1 x_1 + \ldots + a_n x_n.$$

(2) The collection is linearly independent if and only if the equation

$$0 = a_1 x_1 + \ldots + a_n x_n$$

has one and only one solution: $(a_1, \ldots, a_n) = (0, \ldots, 0).$

(3) The collection is a basis if and only if for any $y \in M$, the equation

$$y = a_1 x_1 + \ldots + a_n x_n$$

has one and only one collection (a_1, \ldots, a_n) solving it.

PROOF. The first is the definition of surjection. The latter claim follows because a homomorphism is injective if and only if the kernel is trivial, and $(0, \ldots, 0) \in \mathbb{R}^n$ is the additive identity of \mathbb{R}^n . The last claim is the definition of a bijection.

Definition 29.8. We say that a module is *finitely generated* if there is some number $n \in \mathbb{Z}_{\geq 0}$ and a surjective *R*-module homomorphism $\mathbb{R}^n \to M$.

Chit-chat 29.9. This is also in analogy to groups. A group G is finitely generated if and only if there is some finite collection of elements g_i such that all other elements can be expressed as products of g_i and their inverses. Likewise, M is finitely generated if there is a finite collection x_i such that every element of M can be obtained by taking linear combinations of x_i .

Non-example 29.10. Not every module over R admits a basis. This is in contrast to vector spaces. For example, if $R = \mathbb{Z}$ and $M = \mathbb{Z}/n\mathbb{Z}$, then for any $x \in M$, the equation

ax = 0

has many solutions—a could equal $n, 2n, \ldots$

Take-away: Not every finitely generated *R*-module admits a basis.

3. Vector spaces and subspaces

Recall:

Definition 29.11. A commutative ring is called a *field* if $R - \{0\}$ is a group under multiplication.

Definition 29.12. Let F be a field. A module over F is called a *vector space* over F.

Definition 29.13. Let V be a vector space. Then a submodule of V is called a *linear subspace* of V.

4. Spanning sets are bigger than independent sets

The following is the most importance consequences of being a field, as opposed to a ring:

Theorem 29.14. Let F be a field, and let M be a vector space over F. If v_1, \ldots, v_n span and w_1, \ldots, w_m are linearly independent, then $n \ge m$.

PROOF OF THE THEOREM. Let y_1, \ldots, y_m be linearly independent, and let v_1, \ldots, v_n be spanning. By re-ordering v_i if necessary, we can assume that

$$y_1 = a_1 v_1 + \ldots + a_n v_n$$

for $a_1 \neq 0$. Then y_1, v_2, \ldots, v_n is also spanning, for we can obtain v_1 as a linear combination of the y_1 and the v_i —just divide the above equation by $a_1 \neq 0$ and rearrange terms.

Let $M_1 \subset M$ be the submodule generated by y_1 —i.e., the image of $R \to M$ defined by $1 \mapsto y_1$ —and consider the quotient

$$M/M_1$$
.

(You'll prove this is also an *R*-module—i.e., a vector space—in your homework.) Then $\overline{y_2}, \ldots, \overline{y_m}$ are still linearly independent, for a linear combination of them equals zero if and only if

$$a_1y_1 = a_2y_2 + \ldots + a_my_m$$

for some $a_1 \in F$, and such an equation can hold only when all the $a_i = 0$, since the y_i are assumed linearly independent. Note $\overline{y_1} = 0, \overline{v_2}, \ldots, \overline{v_n}$ are still spanning, so $\overline{v_2}, \ldots, \overline{v_n}$ is spanning. So we have n-1 vectors spanning M/M_1 , and we have m-1 linearly independent vectors in it.

By repeating the trick above, if we have m linearly independent elements in a vector space spanned by n elements, we can obtain m-k linearly independent elements in a quotient vector space spanned by n - k elements. So which of these numbers will hit 0 first? If n - k = 0 first, we are in a quotient vector space spanned by 0 elements—i.e., the zero vector space—so we must conclude m - k = 0 as well, for there are no linearly independent vectors in the zero vector space. And in this case, m = n. If m - k reaches zero before n - kdoes, we have that $m \leq n$.

5. Corollaries

Corollary 29.15. If M is a finitely generated vector space, then any two bases of M have the same number of elements in it.

PROOF. If the $\{v_i\}$ and $\{w_i\}$ above are both spanning and linearly independent, we have $n \ge m$ and $m \ge n$. Hence m = n.

Definition 29.16. Let M be a finitely generated vector space over F. Then the number of elements in a basis for M is called the *dimension* of M over F.

Remark 29.17. This is the single most important fact in linear algebra: That we have a notion of dimension. It took us thousands of years to know what we mean by an n-dimensional space, so don't take this lightly!

Corollary 29.18. If M is a finitely generated vector space, any linearly independent collection w_1, \ldots, w_m can be completed to a basis—that is, we can find w_{m+1}, \ldots, w_n so that the resulting collection w_1, \ldots, w_n is both linearly independent and spanning.

PROOF. Since M is finitely generated, there is some N for which we have a surjection $F^N \to M$. So any set of linearly independent vectors must have size $\leq N$ by the theorem. If $X_m : F^m \to M$ is the map determined by w_1, \ldots, w_m , and if X_m is not surjective, choose an element w_{m+1} not in $im(X_m)$. Note the

5. COROLLARIES

resulting collection w_1, \ldots, w_{m+1} is still linearly independent, for if

$$a_1w_1 + \ldots + a_{m+1}w_{m+1} = 0$$

then we have

$$a_1w_1 + \ldots + a_mw_m = -a_{m+1}w_{m+1}.$$

If $a_{m+1} = 0$, by linear independence of the w_i , we know all $a_i = 0$. On the other hand, if $a_{m+1} \neq 0$ we arrive at a contradiction by dividing:

$$\frac{a_1}{-a_{m+1}}w_1 + \ldots + \frac{a_m}{-a_{m+1}}w_m = w_{m+1}.$$

The lefthand side is in the image of X_m , but w_{m+1} was chosen not to be.

So we have an injective homomorphism $X_{m+1} : F^{m+1} \to M$. If X_{m+1} is not surjective, we repeat the argument. It must become a surjective map at some $m + k \leq N$ by the theorem. So let k be the integer at which X_{m+k} first becomes a surjection. By the above argument, it is still an injection, so we have a basis determined by the generators w_1, \ldots, w_{m+k} .

Corollary 29.19. Any finitely generated module over a field F is isomorphic to F^n for some n.

PROOF. Begin with the linearly independent set 0 and complete to a basis. A basis defines an isomorphism from F^n to your module.

Remark 29.20. This is definitely not true for *R*-modules if *R* is not a field—after all, any finite abelian group is a \mathbb{Z} -module, but any free \mathbb{Z} -module is the zero module or an infinite module.

Corollary 29.21. Let $V' \subset V$ be a subspace. Then $\dim V' + \dim V/V' = \dim V$.

PROOF. Let $v_1, \ldots, v_{\dim V'}$ be a basis for V'. Let $\overline{u_1}, \ldots, \overline{u_{\dim V/V'}}$ be a basis for V/V'. Then choosing representatives u_i for $\overline{u_i}$, the set

$$v_1,\ldots,v_{\dim V'},u_1,\ldots,u_{\dim V/V'}$$

is a basis for V. It obviously spans since for each $a \in V$, \overline{a} is a linear combination of $\overline{u_i}$, hence a is in the V'-orbit of some linear combination of the u_i . It is linearly independent because if we have that

$$0 = a_1 v_1 + \dots + a_{\dim V'} v_{\dim V'} + b_1 u_1 + \dots + b_{\dim V/V'} u_{\dim V/V'}$$

then

$$0 = a_1 \overline{v}_1 + \dots a_{\dim V'} \overline{v_{\dim V'}} + b_1 \overline{u}_1 + \dots b_{\dim V/V'} \overline{u_{\dim V/V'}}$$

The a_i terms go to zero since $\overline{v}_i = 0$, hence we get an equation saying a linear combination of the \overline{u}_i is zero. This means each b_i must be zero by linear

independence of the \overline{u}_i . The original equation then says that $0 = \sum a_i v_i$, so by linear independence of the v_i , the a_i must be zero.

Corollary 29.22 (Rank-nullity theorem). Let $f : V \to W$ be a map of F-modules and assume V is finitely generated. Then dim ker $f + \dim \inf f = \dim V$.

PROOF. By the first isomorphism theorem, we know there is a group isomorphism $V/\ker f \cong \operatorname{im} f$. But this homomorphism is also an F-module map, as you can check by hand. Thus $\operatorname{im} f \cong V/\ker f$.