
Lecture 26: Rings

We’re going to move on from groups, though your homework will still
develop new ideas about groups.

1. Definition of rings

Definition 26.1. Recall that a monoid is a group without inverses. That is,
a monoid is a set M together with a function

· : M ×M → M

which has a unit, and which is associative. We say a monoid is commutative

if ab = ba for all a, b ∈ M .

Definition 26.2. An associative ring is a triple (R,+, ·) where R is a set,
and

(1) + : R × R → R is a function making (R,+) into an abelian group.
We call this operation addition, and we call its identity element 0.

(2) · : R × R → R is a function making R into a monoid. We call the ·

operation multiplication, and we denote the unit by 1.
(3) Finally, we demand that multiplication distributes over addition: This

means that for all a, b, c ∈ R, we have

a(b+ c) = ab+ ac and (b+ c)a = ba+ ca.

where we have written a · b as ab.

We will often simply write R for a ring, leaving the operations + and · implicit.

Definition 26.3. If (R, ·) is an abelian monoid, we call R a commutative

ring.
When we dealt with groups, I proved the cancellation law right away be-

cause it was a useful thing to know. Here’s another useful thing to know:

Proposition 26.4. Let R be an associative ring, and let 0 be the additive
identity for R. Then

0 · a = a · 0 = 0

for all a ∈ R.
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Proof.

0 · a = (0 + 0) · a (Since 0 + 0 = 0)

= 0 · a+ 0 · a (Distributivity)

By the cancellation law for abelian groups, we can subtract 0 · a from both
sides of this equation. We are left with 0 = 0 · a. I leave it to you to prove,
analogously, that a · 0 = 0. �

Remark 26.5. We won’t get to see why in depth, but rings have incredibly
different behaviors based on whether they are commutative or not.

2. First examples of commutative rings

Example 26.6. Consider the triple (Z,+, ·). This makes (Z,+) into an
abelian group, and (Z, ·) is certainly a monoid—multiplication has a unit called
1, and it’s associative. Distributivity is the usual notion of distributivity you’re
used to.

Example 26.7. The triple (Q,+, ·) with the usual addition and multiplica-
tion is a ring. Likewise for R and C with their usual notions of multiplication.
These are special kinds of rings, because any element of R−{0} has an inverse
under multiplication. We’ll talk more about the consequences of this later.

Example 26.8 (Polynomial rings). Let Z[x] denote the set of polynomials
in x with integer coefficients. So an element is an expression

p(x) = a0 + a1x+ a2x
2 + . . . anx

n =
∞�

i=0

aix
i

where ai = 0 for all i bigger than some finite n. For example, the following
are elements in Z[x]:

0, 5, 3 + x− 5x4
, x.

In the third example, we have a0 = 3, a1 = 1, a2 = 0, a3 = 0, a4 = −5.
Let q(x) be a polynomial with coefficients bi. Addition of polynomials is

defined as follows:

p(x) + q(x) :=
∞�

i=0

(ai + bi)x
i
.

Note that since ai = 0 for i bigger than n, and bi = 0 for all i bigger than
some m, the sum is indeed a polynomial, as (ai + bi) = 0 for all i bigger than
max(m,n).
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And the product of two polynomials is defined in the usual way:

p(x) · q(x) = (a0 + a1x+ . . . anx
n)(b0 + b1x+ . . . bmx

m)

= a0b0 + (a1b0 + a0b1)x+ . . .+ anbmx
n+m

=
�

k≥0

(
�

i+j=k

aibj)x
k
.

Proposition 26.9. Z[x] is a commutative ring. More generally, if R is a
commutative ring, the set of polynomials with coefficients in R, R[x], is a
commutative ring.

Proof. You will prove this for homework. �

Example 26.10 (Smooth functions). Here’s an example where it’s much
harder to write down all the elements of the set. Let C∞(Rn) denote the set of
all infinitely differentiable functions f : Rn → R. Given two functions f and
g, we define their sum f +g to be a function that sends x ∈ Rn to f(x)+g(x),
where this addition takes place in R. Their product fg is the function that
sends x ∈ Rn to f(x) · g(x) ∈ R. This is again a ring.

3. The rings Z/nZ
Chit-chat 26.11. So far, we’ve seen three examples of rings that we’re used
to. They’ve all been infinite. Let’s see some finite examples.

Lemma 26.12. Let Z/nZ be the set of integers modulo n. The function

· : Z/nZ× Z/nZ → Z/nZ, a · b := a · b

is well-defined.

Remark 26.13. We are denoting the equivalence class associated to a ∈ Z
by a. Here, a · b is the usual multiplication of integers, and a · b denotes its
equivalence class mod n.

Proof. We need to show that if a = a
� and b = b

�
, then

a · b = a� · b�.

Well, a = a
� modulo n if and only if a = a

�+An for some integer A. Likewise,
we have that b = b

� +Bn for some B. Then

ab = (a� + An)(b� +Bn) = a
�
b
� + (a�B + Ab

� + AB)n

so ab equals a�b� modulo n. �
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Corollary 26.14. Let + be the usual addition on Z/nZ, and let · be the
operation above. Then:

(1) (Z/nZ,+) is an abelian group with unit 0.
(2) (Z/nZ, ·) is an abelian monoid with unit 1.
(3) The operation · distributes over +.

Proof. (1) is something we proved a long time ago.
(2) To prove associativity, note that

(a · b) · c = a · b · c

= (a · b) · c

= a · (b · c)(1)

= a · b · c

= a · (b · c).

Every line is by the definition of ·, except for (1) which uses associa-
tivity of multiplication for the integers. Commutativity holds because

a · b = a · b = b · a = b · a.

Note the middle equality is just commutativity for multiplication for
the integers. The unit is 1 because a · 1 = a · 1 = a.

(3) Distributivity holds because

a · (b+ c) = a · b+ c

= a · (b+ c)

= ab+ ac(2)

= ab+ ac

= a · b+ a · c.

Again, every line is by definition, except (2) uses distributivity for the
usual integers.

�

4. Motivation for commutative rings

There is now a philosophy in modern math that properties of spaces can be
discerned from properties of their set of functions. For instance, by studying
the set of polynomial functions on a space X, one can discern properties about
the space X itself. And in fact, every set of functions is always a commutative
ring. It is the properties of these rings that determine certain properties of
the space X. This is by no means obvious, and some of the most meaningful
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developments in this direction have only come since the late 1880’s—that is,
nearly two hundred years after Descartes first noticed that algebraic equations
can describe concrete geometry. So if you consider that algebra (from the so-
called Golden Age of Islam in the 800’s-plus) and geometry (from the Greeks)
took nearly a thousand years for Descartes to synthesize, and it took us an
even two hundred more years to develop a systematic way to understand that
rings are a powerful way to study geometry, you might realize you’re setting
foot on some pretty rad ideas. We won’t be able to even begin to penetrate
this narrative—of using rings to study geometry—but if you’re interested, you
can do some reading on commutative algebra and algebraic geometry.

5. First examples of non-commutative rings

Example 26.15 (Matrix rings). Fix an integer n ≥ 0 and consider the set
Mn×n(R) of all n × n matrices with entries in R. You can add and multi-
ply matrices, and multiplication of matrices distributes over addition. Hence
Mn×n(R) is a ring. To see distributivity explicitly, consider three matrices
A,B,C with entries aij, bij, cij. Then the ijth entry of A(B + C) is given by

n�

k=1

aik(bkj + ckj) =
n�

k=1

aikbkj +
n�

k=1

aikckj

but this righthand side is the ijth entry of AB + AC. You can likewise show
(B + C)A = BA+ CA.

Example 26.16 (Group rings). Let G be a finite group, and let R be a
commutative ring. Then R[G] as a set is the set of all functions from G to R.
(So every element g ∈ G is associated an element rg ∈ R.) We write such a
function as the summation �

g∈G

rgg.

As an example, here is an example of an element of Z[S3]:

5() + 3(12)− 8(123).

Addition is the obvious addition—we just add component-wise, so

(
�

rgg) +
�

(sgg) =
�

g∈G

(rg + sg)g.

I.e., this is just the addition of functions. Multiplication is not just multipli-
cation of functions. The product of

�
rgg and

�
sgg has the coefficient of g

given by �

(g1,g2)s.t.g1g2=g

rg1sg2 .
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Put another way,

(
�

g∈G

rgg)(
�

h∈G

shh) =
�

g∈G

�

h∈H

rgsh(gh) =
�

k∈G

(
�

(g,h)s.t.gh=k

rgsh)k.

Note that this multiplication is not commutative.


