Lecture 20: More counting, First Sylow Theorem

Chit-chat 20.1. Last time, we saw that the orbit-stabilizer theorem an-
swered some non-trivial questions for us: How big is the symmetry group of
the tetrahedron?—for instance. Recall that the theorem says that for any
group acting on a set X, and for any x €X, there is a bijection G G, = O,.
In particular, if the group G is finite, we have

|0:| = 1G]/1G.].

These kinds of counting theorems are great in math. They’re like “lay-ups”
in basketball; they're the easiest shots you can take. Once you reduce a hard
problem to just counting, you’re in business.

In the proof of Lagrange’s Theorem, we used the reasoning that any set is
a union of its orbits. Hence given a group action of G on a finite set X, we

can conclude
X[ = 10,].

orbits

Let’s use this observation some more. The above equation is called the counting
formula.

Definition 20.2. Let p be a prime number. A finite group G is called a
p-group if
G| =p"

for some integer n > 1. Le., if its order is a power of p.

Definition 20.3. Let GG act on a set X. x € X is called a fixed point of the
group action if gr = x for all g € G.

Proposition 20.4. Fix a p-group G. Fix a finite set X whose order is not
divisible by p. Then any action of G on X must have at least one fixed point.

Example 20.5. So if someone claims to you that they have a p-group acting
on the tetrahedron, you can look at the induced action of G on the set of
vertices of the tetrahedron. If p is anything other than 2, you know that this
group action fixes at least one vertex.

15
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PRrROOF. By the orbit-stabilizer theorem, any orbit O, has order dividing
the order of the group G. Hence we have that |O,| has to equal p* for some
k > 0. Note that we must prove that |O,| = p® = 1 for some z € X to exhibit
a fixed point.

Such an z must exist—otherwise, each O, is equal to p* for £ > 1, hence
each O, is divisible by p. Then the righthand side of the counting formula

X[=> 0,

orbits

is divisible by p. But by assumption, | X| cannot be divisible by p. Hence O,
must be 1. 0

Here’s anotherr application:

Proposition 20.6. Let G be a p-group. Then G has non-trivial center (i.e.,
its center must contain more than just the identity element).

Chit-chat 20.7. Throughout, we let Z stand for the center of G.

PrOOF. Consider the conjugation action of GG on itself. The orbits of this
action are precisely the conjugacy classes of G. Hence the counting formula

reads
Gl= >

Conjugacy classes

where [x] is the conjugacy class of z—it is the set of all elements of the form
grg~! for some g € G. At this point, I asked the class to prove the rest of the
theorem as an exercise. I gave a hint: When does |[z]| = 17

The answer to the hint is that |[z]| = 1 if and only if = is in the center
of G. For if the only element in O, is x itself, this means grg~' = x for all
g € G—this of course implies that gr = zg.

Finally, we know that 15 € G is always in the center of GG, so the counting

formula reads
Gl=1+ % |kl

conjugacy classes # [1¢g]

If |[x]| > 2 for all x # 1¢, then the righthand side is not divisible by p—for it
would be a summation of the form

1+ Z Pt
various k > 1

This is a contradiction since |G| is only divisible by p. Hence there must be
some = # lg for which |[z]| = 1; that is, there must be some z # 15 in the
center. ]

This has a great corollary.
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Corollary 20.8. Any group of order p? is abelian.

Chit-chat 20.9. This is highly non-trivial. For instance, imagine proving
by hand that a group of order 49 must be abelian.

Chit-chat 20.10. We knew that every group of order p is abelian, since it
must be cyclic. This is the next power up.

PRrROOF. The center of G is a subgroup, so by Lagrange’s Theorem, we
must have |Z| = 1,p, or p? since these are the only divisors of p?.

On the other hand, the proposition tells us that |Z| # 1, so it must be p
or p*.

Assume |Z| = p. We will yield a contradiction. For fixing x € G, ¢ Z, let
us examine the stabilizer of x under the conjugation action of G. This, we
called the centralizer of x last time, and we denote it Z(x). It is the set of all
y € G for which zy = yx.

Since the stabilizer of a group action is always a subgroup, by Lagrange’s
theorem, we know that |Z(z)| must divide p?. On the other hand, Z C Z(x)
since any element of the center (by definition) commutes with z. Moreover,
x € Z(x) since x commutes with itself. This proves that |Z| <. |Z(x)|, so
|Z ()] must be a number bigger than p dividing p?. We conclude |Z(z)| = p*.

But this means every element of G commutes with . Hence x must be in
the center. OJ

Chit-chat 20.11. So this strategy of just “counting” has paid off great divi-
dends. Let’s milk it for all we’ve got. One beautiful outcome of all this milking
is Sylow’s theorems. We'll state just the first one today.

Let p divide |G|. We write

G| =pm
where p© is the largest power of p dividing |G|. In particular, ged(m,p) = 1.

Definition 20.12. Then a Sylow p-subgroup, or p-Sylow subgroup), is a sub-
group H C G such that |H| = p°. In other words, it is a subgroup is the
biggest subgroup with size a power of p.

Chit-chat 20.13. So if there are many different primes p that divide |G|, we
can try to look for a Sylow p-subgroup for each of these p. As of this comment,
we have no idea if there even existence, nor how many there may be inside of

G.

Example 20.14. Let G = S5. Then since 6 = 3 - 2, a Sylow 3-subgroup
is a subgroup of order 3 inside G. THhre is a unique one, given by H =



18 LECTURE 20: MORE COUNTING, FIRST SYLOW THEOREM

{id, (123), (132)}. There are three Sylow 2-subgroups: {id, (12)},{id, (13), }, {id, (23)}.

Theorem 20.15. Let p divide |G|. Then there exists a Sylow p-subgroup of
G.

Corollary 20.16. Let p divide |G|. Then there exists an element x € G of
order p.

Chit-chat 20.17. You may not have considered this corollary before. By
Lagrange, we know that any element = € G must divide the order of |G|. But
given a number dividing |G|, is it obvious that there should (or shouldn’t) be
an element of a specified order p for a prime dividing G?

PROOF. Since p divides G, |H| > 2. So we can choose an element z € H
such that = # 1g. Moreover, the order of x must divide |H| by Lagrange’s
theorem. Thus

for some k > 1. Just let y = 27" Then ¢ = 1. O

Next time, we’ll state the other Sylow Theorems, and prove a few things.



