
Lecture 20: More counting, First Sylow Theorem

Chit-chat 20.1. Last time, we saw that the orbit-stabilizer theorem an-
swered some non-trivial questions for us: How big is the symmetry group of
the tetrahedron?—for instance. Recall that the theorem says that for any
group acting on a set X, and for any x 2X, there is a bijection G Gx

⇠= Ox.
In particular, if the group G is finite, we have

|Ox| = |G|/|Gx|.
These kinds of counting theorems are great in math. They’re like “lay-ups”

in basketball; they’re the easiest shots you can take. Once you reduce a hard
problem to just counting, you’re in business.

In the proof of Lagrange’s Theorem, we used the reasoning that any set is
a union of its orbits. Hence given a group action of G on a finite set X, we
can conclude

|X| =
X

orbits

|Ox|.

Let’s use this observation some more. The above equation is called the counting
formula.

Definition 20.2. Let p be a prime number. A finite group G is called a
p-group if

|G| = pn

for some integer n � 1. I.e., if its order is a power of p.

Definition 20.3. Let G act on a set X. x 2 X is called a fixed point of the
group action if gx = x for all g 2 G.

Proposition 20.4. Fix a p-group G. Fix a finite set X whose order is not
divisible by p. Then any action of G on X must have at least one fixed point.

Example 20.5. So if someone claims to you that they have a p-group acting
on the tetrahedron, you can look at the induced action of G on the set of
vertices of the tetrahedron. If p is anything other than 2, you know that this
group action fixes at least one vertex.
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16 LECTURE 20: MORE COUNTING, FIRST SYLOW THEOREM

Proof. By the orbit-stabilizer theorem, any orbit Ox has order dividing
the order of the group G. Hence we have that |Ox| has to equal pk for some
k � 0. Note that we must prove that |Ox| = p0 = 1 for some x 2 X to exhibit
a fixed point.

Such an x must exist—otherwise, each Ox is equal to pk for k � 1, hence
each Ox is divisible by p. Then the righthand side of the counting formula

|X| =
X

orbits

Ox

is divisible by p. But by assumption, |X| cannot be divisible by p. Hence Ox

must be 1. ⇤
Here’s anotherr application:

Proposition 20.6. Let G be a p-group. Then G has non-trivial center (i.e.,
its center must contain more than just the identity element).

Chit-chat 20.7. Throughout, we let Z stand for the center of G.

Proof. Consider the conjugation action of G on itself. The orbits of this
action are precisely the conjugacy classes of G. Hence the counting formula
reads

|G| =
X

conjugacy classes

|[x]|

where [x] is the conjugacy class of x—it is the set of all elements of the form
gxg�1 for some g 2 G. At this point, I asked the class to prove the rest of the
theorem as an exercise. I gave a hint: When does |[x]| = 1?

The answer to the hint is that |[x]| = 1 if and only if x is in the center
of G. For if the only element in Ox is x itself, this means gxg�1 = x for all
g 2 G—this of course implies that gx = xg.

Finally, we know that 1G 2 G is always in the center of G, so the counting
formula reads

|G| = 1 +
X

conjugacy classes 6= [1G]

|[x]|.

If |[x]| � 2 for all x 6= 1G, then the righthand side is not divisible by p—for it
would be a summation of the form

1 +
X

various k � 1

pk.

This is a contradiction since |G| is only divisible by p. Hence there must be
some x 6= 1G for which |[x]| = 1; that is, there must be some x 6= 1G in the
center. ⇤

This has a great corollary.
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Corollary 20.8. Any group of order p2 is abelian.

Chit-chat 20.9. This is highly non-trivial. For instance, imagine proving
by hand that a group of order 49 must be abelian.

Chit-chat 20.10. We knew that every group of order p is abelian, since it
must be cyclic. This is the next power up.

Proof. The center of G is a subgroup, so by Lagrange’s Theorem, we
must have |Z| = 1, p, or p2 since these are the only divisors of p2.

On the other hand, the proposition tells us that |Z| 6= 1, so it must be p
or p2.

Assume |Z| = p. We will yield a contradiction. For fixing x 2 G, 62 Z, let
us examine the stabilizer of x under the conjugation action of G. This, we
called the centralizer of x last time, and we denote it Z(x). It is the set of all
y 2 G for which xy = yx.

Since the stabilizer of a group action is always a subgroup, by Lagrange’s
theorem, we know that |Z(x)| must divide p2. On the other hand, Z ⇢ Z(x)
since any element of the center (by definition) commutes with x. Moreover,
x 2 Z(x) since x commutes with itself. This proves that |Z| < 6= |Z(x)|, so
|Z(x)| must be a number bigger than p dividing p2. We conclude |Z(x)| = p2.

But this means every element of G commutes with x. Hence x must be in
the center. ⇤

Chit-chat 20.11. So this strategy of just “counting” has paid o↵ great divi-
dends. Let’s milk it for all we’ve got. One beautiful outcome of all this milking
is Sylow’s theorems. We’ll state just the first one today.

Let p divide |G|. We write

|G| = pem

where pe is the largest power of p dividing |G|. In particular, gcd(m, p) = 1.

Definition 20.12. Then a Sylow p-subgroup, or p-Sylow subgroup), is a sub-
group H ⇢ G such that |H| = pe. In other words, it is a subgroup is the
biggest subgroup with size a power of p.

Chit-chat 20.13. So if there are many di↵erent primes p that divide |G|, we
can try to look for a Sylow p-subgroup for each of these p. As of this comment,
we have no idea if there even existence, nor how many there may be inside of
G.

Example 20.14. Let G = S
3

. Then since 6 = 3 · 2, a Sylow 3-subgroup
is a subgroup of order 3 inside G. THhre is a unique one, given by H =
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{id, (123), (132)}. There are three Sylow 2-subgroups: {id, (12)}, {id, (13), }, {id, (23)}.

Theorem 20.15. Let p divide |G|. Then there exists a Sylow p-subgroup of
G.

Corollary 20.16. Let p divide |G|. Then there exists an element x 2 G of
order p.

Chit-chat 20.17. You may not have considered this corollary before. By
Lagrange, we know that any element x 2 G must divide the order of |G|. But
given a number dividing |G|, is it obvious that there should (or shouldn’t) be
an element of a specified order p for a prime dividing G?

Proof. Since p divides G, |H| � 2. So we can choose an element x 2 H
such that x 6= 1G. Moreover, the order of x must divide |H| by Lagrange’s
theorem. Thus

xpk = 1G
for some k � 1. Just let y = xpk�1

. Then yp = 1G. ⇤
Next time, we’ll state the other Sylow Theorems, and prove a few things.


