
Solutions Cluster A: Getting a feel for groups

1. Some basics

(a) Show that the empty set does not admit a group structure.
By definition, a group must contain at least one element—the iden-

tity element.

(b) Show that the identity element of a group G is unique. (That is, if two
elements 1 and 1� satisfy the defining property of the identity element,
then 1 = 1�.)

If 1 is the identity, then it must satisfy the equation 1g = g1 = g
for all g. In particular, if 1� = g, we must have 11� = 1�. On the other
hand, if 1’ is also the identity element, we must have 11� = 1. By
transitivity, we conclude1 = 1�.

(c) Given an element g ∈ G, show that g−1 is unique. (That is, given
elements h, h� satisfying the defining property of g−1, show that h = h�.)

Suppose h and h� are both inverses to g. Then gh� = 1. By
multiplying both sides of the equation by h on the left, we obtain
h(gh�) = h. But by associativity, the lefthand side becomes h(gh�) =
(hg)h� = 1h� = h�. By transitivity of equality, we have that h� = h.

3





Homework 2

1. Group homomorphisms versus maps of sets

Let φ3 : Z → Z be the map φ3(n) = 3n. So for instance, φ(2) = 6. We
think of the integers as a group under addition.

(a) Show that φ3 is a group homomorphism.
By distributivity of multiplication over addition, k(a+b) = ka+kb

for all k, a, b ∈ Z. Hence φ3(a+ b) = 3(a+ b) = 3a+3b = φ3(a)+φ3(b).

(b) Show that there exists a map of sets ψ : Z → Z such that ψ ◦ φ3 = idZ.
There are many such choices. For instance, by the division algo-

rithm, we can uniquely write any number a ∈ Z as a = 3k + r where k
is an integer and r is some integer between 0 and 2. Setting ψ(a) = k
clearly satisfies ψ(3k) = k.

(c) Show that no choice of such a ψ can be a group homomorphism.
In general, note that 1 + . . . + 1 = n, where the addition occurs

n times. Hence any group homomorphism ψ : Z → Z must satisfy
ψ(1) + . . . + ψ(1) = ψ(n), where the addition again occurs n times on
the lefthand side. But this means that ψ(n) must be divisible by n. In
contrast, if ψ ◦ φ3(1) = 1, we must have that ψ(3) = 1, and 1 is not
divisible by 3.

(d) For any integer k, define a map of sets φk : Z → Z by φ(n) = kn. Show
this defines a group homomorphism from Z to Z. Determine all k for
which this map is an isomorphism.

We showed that this is a homomorphism in general in part (a)
above. By our solution to part (c), we see that any homomorphism ψ
must send φk(1) = k to a number divisible by k. On the other hand,
ψ ◦ φk = id means ψ(φk(1)) = 1. The only numbers dividing 1 are
k = ±1, so we conclude k must be equal to ±1. In either case ψk is a
bijection, as the function n �→ −n and n �→ n are both bijections.
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2. The sign representation

(a) Let Sn be the symmetric group on n elements. (Automorphisms of a set
of n elements.) For every element σ ∈ Sn, let φ(σ) be the n×n matrix
which sends the standard basis vector ei ∈ Rn to the vector eσ(i). Show
that the assignment φ : Sn → GLn(R) is a group homomorphism.

Let σ,σ� ∈ Sn. By definition, φ(σ) sends ei to eσ(i), and likewise for
φ(σ�). Recall that if two matrices represent two linear transformations
T and T �, then the product of the two matrices represent the composi-
tion of the linear transformations T and T �. Hence the product matrix
φ(σ�)φ(σ) sends ei to

φ(σ�)(φ(σ)(ei)) = φ(σ�)(e(σ(i))) = eσ�(σ(i)) = e(σ�σ)(i).

A linear transformation (and hence its matrix) is determined by what it
does on a set of basis vectors, and we’ve seen that φ(σ�)φ(σ) represents
the linear transformation sending ei to eσ�σ(i). By definition, this is the
linear transformation represented by φ(σ�σ). Hence we have a group
homomorphism.

(b) List every element σ ∈ S3 and write out the matrix φ(σ) for each of
them.

Now that we have cycle notation, we can list the elements as follows:

id, (12), (23), (13),

(123) (132).

In corresponding order, the matrices φ(σ) are given by



1 0 0
0 1 0
0 0 1



 ,




0 1 0
1 0 0
0 0 1



 ,




1 0 0
0 0 1
0 1 0



 ,




0 0 1
0 1 0
1 0 0



 ,




0 0 1
1 0 0
0 1 0



 ,




0 1 0
0 0 1
1 0 0



 .

Note that we see that the ith column of the matrix is given by the σ(i)
basis vector.

(c) Show that the determinant defines a group homomorphism det : GLn →

R×, which sends A �→ detA. (You may use properties of determinants
you learned from linear algebra class.) What is the special name we
usually give to the kernel of this map?

The determinant is a group homomorphism because det(AB) =
det(A) det(B) for any two matrices A,B. The identity element of R×

under multiplication is 1, so the kernel of this map is given by all
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matrices with determinant 1. The special name is the special linear
group of rank n, otherwise written as SLn(R).

(d) Consider the composite group homomorphism Sn → GLn → R×. We
call this the sign representation of Sn. What is its image? (It is a
subgroup of R×.)

If n ≥ 2, the image is the set {±1} = {1,−1} ⊂ R×. By the
definition that φ(σ) sends ei to eσ(i), we see that every column of φ(i)
has exactly one non-zero entry, given by the number 1. Hence the
determinant formula guarantees that det(φ(σ)) is given as some product
of many copies of 1 and -1; i.e., the determinant is either 1 or -1. On
the other hand, we can see that the permutation (12) ∈ Sn for any
n ≥ 2 has determinant -1, for instance by cofactor expansion. Finally,
if n = 1, the image is given by the determinant of the identity matrix—
i.e., the image is the set {1} ⊂ R.

3. Centers

(a) For any group G, the center of G is the set of those g such that g
commutes with all elements of G. That is, gh = hg for all h. Show
that the center of G is a normal subgroup of G.

Let Z be the center of G. Note that the identity gh = hg implies
that g = hgh−1 for any g ∈ Z, h ∈ G. (Just multiply by h−1 on the
right.) To prove that Z is normal, we must show that for all h ∈ G,
hZh−1 = Z. Well, for any g ∈ Z, we know that hgh−1 = g. This shows
both Z ⊂ hZh−1 and hZh−1 ⊂ Z at the same time; hence Z = hZh−1.

(b) What is the center of GLn(R) for n ≥ 1?
Let A be a matrix in the center. This means that for any invertible

matrix B, we have BAB−1 = A. We now interpret the entries mij of A
as a change-of-basis formula: Let v1, . . . , vn be the columns of B. Since
B is invertible, these vectors form a basis for Rn. Then the entries
mij are numbers such that BAB−1 sends vi to the linear combination�

n

j=1 mijvj . Importantly, these coefficients mij are the same for any
basis {vi}, because regardless of the basis given by B, we will have
(mij) = A.

This observation proves that mij must equal zero for i �= j. For if
mij �= 0 for some pair i �= j, let B� be the matrix obtained by scaling
the basis vector vj by (for instance) 12, while keeping all other basis
vectors the same. This means B� defines a new basis

v�1 = v1, . . . , v�
j
= 12vj , . . . , v�

n
= vn.
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On the other hand,

BAB−1(vi) =
n�

k=1

mikvj and B�AB�−1
(v�

i
) =

n�

k=1

mikv
�
k
= 12mijvj+

n�

k �=i

mijvk.

Here, we have used the fact that the coefficients mik are equal in any
basis because A is in the center of GLn(R). Moreover, since the ma-
trices BAB−1 and B�AB�−1 are both equal to A, they define the same
linear transformation—since vi = v�

i
, and since the vi form a basis,

the coefficients above are uniquely determined. Hence we arrive at the
statement that 12mij = mij . We conclude that mij = 0 when i �= j.

Now we are home-free. If A must be a diagonal matrix, all of its
diagonal entries must be equal, as any B which simply changes the
ordering of an ordered basis will swap the eigenvalues of A. QED.

Note: There are many ways to prove this face, and I chose what
I think is the cleanest. You can also prove that the center of GLn(R)
consists of matrices of the form λI by induction on n, or by explicit
computations for well-chosen matrices.

4. Using divisibility

(a) Let G be a group of order p for some prime p. Let x be a non-identity
element of G. Show that x must have order p.

The subgroup �x� generated by x must have order dividing |G| by
Lagrange’s theorem. We know |�x�| > 1 since x is not the identity. But
the only non-negative number that divides p aside from 1 is p because
p is prime by assumption; this shows |�x�| = p. By definition, the order
of x is |�x�|, so x has order p.

(b) Let G be a group of order pn for some prime p and n ≥ 1. Show that
G must contain an element of order p.

Let x be an element that is not the identity ofG. The subgroup |�g�|
must have some order dividing the order of G by Lagrange’s theorem,
so we conclude that xp

k
= 1 for some k between 1 and n. (It is a basic

fact that the only numbers dividing pn are numbers of the form pk.)

Whatever this k is, consider the element y = xp
k−1

. By definition, it
has order p, since yp = xp(pk−1) = xp

k
= 1.

(c) Let G be a group (possibly infinite). Let H and H � be finite subgroups.
Show that if gcd(|H|, |H �|) = 1, then H ∩H � = {1}.

If H and H � are subgroups of G, so is H ∩H �. This can be seen as
follows: Since H and H � are subgroups, 1G is in both of them. Hence
1G is in their intersection. Similarly, if both g1 and g2 are in bothH and
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H �, we see that g1g2 is in both H and H � by the closure of subgroups.
This means g1g2 ∈ H ∩H �. Finally, if h ∈ H and H �, then its inverse is
in both H and H �. We conclude that H ∩H � is a subgroup of both H
and of H �. By Lagrange’s Theorem, this subgroup must have an order
dividing the orders of both H and of H �. However, since H and H �

have greatest common divisor 1, the order of H ∩H � must be 1.

5. Using divisibility again

(a) Let G be a finite abelian group. Show that the map x �→ xn, for any
integer n ≥ 0, is a group homomorphism.

Let + denote the group operation in G. Then φ : x �→ xn is in fact
the homomorphism x �→ x+ . . .+x, where the addition occurs n times.
We then have that

φ(x+ y) = (x+ y) + . . .+ (x+ y).

One can rearrange the terms on the righthand side because x+y = y+x
for an abelian group. We conclude

φ(x+ y) = (x+ . . .+ x) + (y + . . .+ y).

This proof did not, in fact, rely on G being finite.

(b) Suppose further that gcd(|G|, n) = 1. Show that the map x �→ xn is a
group automorphism of G.

Since G is finite, it suffices to show that the map φ : x �→ xn

is injective. To show this, it suffices to show that the kernel of φ is
trivial. Suppose that x is in the kernel, so that xn = id. Then the
group generated by x must have order diving n. 1 At the same time,
it is a subgroup of G, so it must have order diving n. Since the only
non-negative number dividing both n and |G| is 1 by hypothesis, �x�
must be a subgroup of G with one element—i.e., x must be the identity.
This shows that the kernel consists only of the element 1G.

6. Free groups

What does a group with a set of generators, but with no relations look
like? If the set of generators is S, this group is called the free group with
generating set S. You will prove its existence, and its universal property,
in this exercise.

1
To see this, suppose otherwise. Then n = aN + r, where N is the order of �x�, and

where r is between 1 and N − 1. We then see that xaN+r
= (xN

)
axr

= xr
= 1. Hence

every element of �x� is of the form 1, x, . . . , xr
. This is a contradiction since r < N and

there must be N elements in �x� by definition.
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Definition 6.1. Let S = {a, b, c, . . .} be a set. Though I have written
a, b, c as though the elements may be enumerable (i.e., countable), S need
not be countable. For n ≥ 0, a word of length n in S is defined to be a map
of sets {1, . . . , n} → S. The empty word is the map from the empty set to
S, and is the unique word of length 0.

So a word of length n is simply an ordered string of n elements of S,
possibly with repetitions.

Example 6.2. If S = {a, b, c}, then here are the words of lengths 0 to
2:

∅ (the empty word)

a, b, c

aa, bb, cc, ab, ba, bc, cb, ca, ac.

Here are some examples of words of length 5:

aaaba, ababa, acccb.

Given a set S, let S be the set given by adjoining a new element for
every s ∈ S. We will write this new element as “s−1” and call it the inverse
of s. So for example, if S = {a, b, c, . . .}, then

S = {a, a−1, b, b−1, c, c−1 . . .}.

Definition 6.3. A word in S is called reduced if a letter in the word
never appears next to its inverse.

Remark 6.4. As an example, here are some unreduced words, with
unreduced bits underlined.

abbaaa−1bcbcc−1b, aa−1, ab−1bb−1c, ab−1bb−1c.

Given an unreduced word, we can make it reduced by simply removing two
adjacent letters when one is the inverse of the other. For example, here are
the reductions of the above words:

abbabcbb, ∅, ab−1c, ab−1c.

Note that to fully reduce a word, one may require a few steps:

ab−1cc−1ba−1
→ ab−1ba−1

→ aa−1
→ ∅.

Regardless, since every word is by definition of finite length, this reduction
process terminates. Given any word in S, there is a unique reduction of
that word, in which no letter appears next to its inverse.
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Given two words w1 and w2, we may simply concatenate them (i.e.,
put them side by side) to create a new word. For instance, if

w1 = abc, w2 = c−1baa

then we have

w1w2 = abcc−1baa, w2w1 = c−1baaabc.

(I’ve been told this is a common way to create new words in German.) Note
that even if two words are reduced, their concatenation may not be. Also
note that w1w2 need not equal w2w1.

Definition 6.5. Let S be a set. The free group on S is the set of
reduced words of length n ≥ 0 in S. The group multiplication is given by
concatenating two words, then reducing the concatenation.

The problem:

(a) Show that any word in S admits a unique reduction.
(b) Show that the above operation is associative.
(c) Show that the free group is in fact a group.
(d) Let G be a group, and let j : S → G be a map of sets. Show that this

extends to a group homomorphism F (S) → G.
Let s ∈ S be an element of the set, and j(s) ∈ G its image in

G. Let us denote by j : S → G the function sending s �→ j(s) and
s−1 �→ j(s)−1. We then define a function

φj : Word(S) → G

by sending any word W = s1 . . . sl, with si ∈ S, to the element

φj(s1) · φj(s2) · . . . · φj(sl).

We must prove this is well-defined on F (S), and a homomorphism.
Well, if w is a reduction of W , it is obtained by canceling pairs of
letters appearing next to their inverses. On the other hand, if any
letter s appears next to its inverse s−1 inside W , the above string of
multiplications in G will also see an appearance of φj(s) appearing
next to φj(s−1) = φj(s)−1. Hence if we cancel two inverse letters in
the word W to obtain a new word w�, we see that φj(W ) = φj(w�).
More explicitly, given a product of many elements in G, omitting an
appearance of φj(s)φj(s)−1 (or of φj(s)−1φj(s)) does not change the
value of the multiplication:

φj(s1)·. . .·φj(s)φj(s)
−1

·. . .·φj(sl)) = φj(s1)·. . .·1G·. . .·φj(sl)) = φj(s1)·. . .·φj(sl))

(and likewise for canceling the appearance of φj(s)−1φj(s)). So if the
words w�

i
for i = 1, . . . , I are the words one passes through on reducing
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W to its reduction w, we have a string of equalities:

φj(W ) = φj(w
�
1) = . . . = φj(w

�
I
) = φj(w).

This shows that φj is well-defined on F (S). To show that φj defines a
homomorphism, let W = w� · w�� be a concatenation of words, and let
w be its reduction. We must prove that

φj(w) = φj(w
�) · φj(w

��).

By well-definedness, it suffices to show φj(W ) = φj(w�) · φj(w��). This
is obvious, since if

w� = s�1 . . . s
�
l� , w�� = s��1 . . . s

��
l��

then

φj(W ) = φj(s
�
1) · . . .φj(s

�
l�) · φj(s

��
1) · . . . · φj(s

��
l��)

= (φj(s
�
1) · . . .φj(s

�
l�)) · (φj(s

��
1) · . . . · φj(s

��
l��)

= φj(w
�) · φj(w

��).

(e) Show there is a bijection of sets

{Group homomorphisms F (S) → G} ∼= {Set maps S → G}.

We above define a homomorphism φj : F (S) → G for any function
j : S → G. This defines a function

Φ : {Set maps S → G} → {Group homomorphisms F (S) → G}

given by j �→ φj . We define an inverse map Ψ as follows: If φ is a
group homomorphism, it assigns a value to the reduced word s, for any
s ∈ S. So we define Ψ(φ) := ψφ to be the function sending s to φ(s).
We must show that Ψ ◦ Φ and Φ ◦ Ψ are the identities. Well, given a
homomorphism φ : F (S) → G, let w be the word

w = s1 . . . sl

where the si are whatever letters of S are in w. we know that

φ(w) = φ(s1 · . . . sl) = φ(s1) · . . . · φ(sl)

by the group homomorphism property, and the fact that every word is
a product of one-letter words. So the value of φ on one-letters words—
i.e., its value on S—determines its value on all elements of F (S). This
shows that Φ ◦ Ψ is the identity. On the other hand, we have defined
Φ so that Φ(j) = φj simply sends one-letter words to the value j(s).
Hence Ψ ◦ Φ is also the identity. This completes the proof.
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Homework 3

1. Cosets of S3 with respect to S2

Let S3 be the symmetric group on 3 elements. Recall that this is the
set of all bijections from 3 to itself, where 3 = {1, 2, 3}. Let H ⊂ S3 be
the set of all bijections τ : 3 → 3 such that τ(3) = 3—i.e., the subset of all
bijections that fix 3.

(a) Show H is a subgroup of S3.
There are two ways to do this: An explicit and a non-explicit.

Explicitly, one sees that the only bijections τ fixing 3 are those of the
form 1G = id3, and τ = (12). This is because any bijection of 3 fixing 3
must only permute the elements 1, 2 ∈ 3, and τ is the only permutation
of 3 doing this. One sees that τ2 = id, so the set {1G, τ} is a subgroup.
Non-explicitly, if τ and τ � both fix 3, then τ ◦τ �(3) = τ(τ �3) = τ(3) = 3
and τ � ◦ τ(3) = τ �(τ(3) = τ �(3) = 3. Hence H is fixed under products.
The identity obviously fixed 3, and the inverse of any function with
τ(3) = 3 is also a function fixing 3. This shows that H is a subgroup
of S3.

(b) So H acts on G = S3. How many elements are there in the orbit space?
That is, how many orbits are there?

By the proof of Lagrange’s theorem, we know that |G| is equal to
|H| times the number of orbits of the H action on G. Well, |G| =
3!, while H has only two elements in it (for instance, by the explicit
computation in part (a)). This means that there are exactly 6/2 = 3
orbits.

(c) Finally, write out each orbit explicitly. This means you must write out
which elements of S3 are in each orbit.

As in a previous homework, we can write the elements of S3 as

id, (12), (23), (13),

(123) (132).

13
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We know that H is one orbit on its own, so we have an orbit given by

O1G = H = {id, (12)}.

Arbitrarily choosing an element not in this orbit—for instance, (23),—
we obtain another orbit by looking at (12)(23) and (23):

O(23) = {(23), (231)}.

Knowing there is only one orbit let, we can put the remaining elements
in the third orbit:

O13 = {(13), (321)}.

(d) For any n ≥ 1, let H ⊂ Sn be the subgroup of all elements that fix n.
Exhibit an isomorphism from H to Sn−1.

Let us define a function φ : Sn−1 → Sn which sends a bijection
σ : n− 1 → n− 1 to the bijection φσ defines as follows: φσ sends
n �→ n, and sends i �→ σ(i) for i �= n. This is a group homomorphism
because

φσ ◦ φσ�(i) = φσ(σ
�(i)) = σ(σ�(i)) = (σσ�)(i) = φσσ�(i)

for i �= n, and
φσ ◦ φσ�(n) = n = φσσ�(n)

otherwise. This map is an injection because if φσ = idn, this means that
σ(i) = i for every i. But the only such bijection is the identity bijection,
hence the kernel is trivial. It is a surjection because any bijection that
fixes n is determined uniquely by a bijection on the remaining elements
1, . . . , n− 1.

(e) How many orbits are there of the action of H on Sn?
As before, the number of orbits is equal to the order of Sn divided

by the order of H. Since H is isomorphic to Sn−1, this is n! divided by
(n− 1)!. Hence the number of orbits is n.

2. Cyclic groups

A group G is called cyclic if there exists g ∈ G for which �g� = G.

(a) Show that if two cyclic groups have the same order (finite or otherwise)
then they must be isomorphic.

Let G andH be two cyclic groups of the same order n. Assume G =
�g� for some g ∈ G, and H = �h� for some h ∈ H. Each receives a group
homomorphism from Z by sending 1 → g, and 1 → h. The kernel of
both these homomorphisms is nZ, while the function is a surjection by
the assumption that g and h generate G and H, respectively. Hence by
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the First Isomorphism Theorem, we have isomorphisms G ∼= Z/nZ ∼=
H. By transitivity of group isomorphisms, we are done.

(b) Show that S2 is cyclic.
S2 consists of two elements: the identity, and a non-trivial element

τ = (12). τ2 = 1 so we see that τ generates the whole subgroup.

(c) Show that Z is cyclic.
Any number n can be written as a finite sum of 1, or of -1. Specif-

ically, we have 1 + . . . + 1 = n for n positive, where the summation
occurs n times. For n negative, we have −1 + . . . − 1 = n. Hence
ZZ = �1�.

(d) Use Lagrange’s theorem to show that any group of prime order must
be cyclic. (Hint: Last homework.)

Let g �= 1, and consider the subgroup �g� ⊂ G. This must have
order bigger than 1, since it contains at least two distinct elements—1
and g. On the other hand, it must have order dividing |G|. Since |G|

is prime, the only number bigger than 1 dividing |G| is |G| itself. This
means |�g�| = |G|, so �g� = G.

(e) Prove that for any integer n ≥ 1, there exists a cyclic group of order n.
For instance, as a subgroup of Sn, or of GL2(R), or of C×.

As a subgroup of Sn, one can take the subgroup generated by
the cycle σ = (1 . . . n). As a subgroup of GL2(R), one can consider
the subgroup generated by the matrix of rotating by 2π/n radians.
Finally, as a subgroup of C×, one can write the subgroup generated by
the complex number e2πi/n. These latter two groups are the easiest to
prove as cyclic and of order n—clearly, rotation by 2π/n is an operation
which becomes the identity after n iterations, so the group generated by
this rotation has order at most n. We can enumerate the group elements
by how much they rotate the plane: 2π/n, 2(2π/n), . . . , (n− 1)(2π/n).
If the order were any smaller than n, we would conclude that a rotation
of less than 2π acts as the identity on the plane, which is untrue.

3. Abelian groups

A group G is called abelian if for all g1, g2 ∈ G, we have g1g2 = g2g1.

(a) Show that Sn is not abelian for any n ≥ 3.
For n = 3, the elements (12) and (123) do not commute,as

(12)(123) = (23), (123)(12) = (13).
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These equations hold if we consider the above identities as taking place
in Sn for any n ≥ 3 (i.e., by considering (12), (123), (23), (23) as
elements of Sn); hence the two elements do not commute.

(b) Show that any cyclic group is abelian. Conclude that Sn is not cyclic
for any n ≥ 3.

This is tantamount to showing that the map Z → G given by
a �→ ga is a group homomorphism. We’ll show this fact in (excruciating)
detail, only because it is so central to everything. If G = �g�, any
element of G is of the form ga for some a ∈ Z. By definition of the
notation ga, we have

ga = g · . . . · g or ga = g−1
· . . . · g−1

depending on the sign of a. (In either the case, there are |a| terms in
the product. If a = 0, we take ga = 1.) Then we see case by case that

ga+b =






g · · · . . . · g · g · . . . · g, (a+ b terms)

= ga · gb if a, b ≥ 0

g−1 · . . . · g−1 · g−1 · . . . · g−1, (a+ b terms)

= ga · gb if a, b ≤ 0

g · . . . · g, (a+ b terms)

= g · . . . · g · g−1 · . . . · g−1, a terms, then |b| terms

= ga · gb if a ≥ 0, b ≤ 0, a+ b ≥ 0

g · . . . · g, (a+ b terms)

= g−1 · . . . · g−1 · g · . . . · g, |a| terms, then b terms

= ga · gb if a ≤ 0, b ≥ 0, a+ b ≥ 0

g−1 · . . . · g−1, (|a+ b| terms)

= g · . . . · g · g−1 · . . . · g−1, a terms, then |b| terms

= ga · gb if a ≥ 0, b ≤ 0, a+ b ≤ 0

g−1 · . . . · g−1, (|a+ b| terms)

= g−1 · . . . · g−1 · g · . . . · g, |a| terms, then b terms

= ga · gb if a ≤ 0, b ≥ 0, a+ b ≤ 0

That is, we have shown that ga+b = ga · gb. But a + b = b + a in the
integers, so this proves gb · ga = gb+a = ga+b = ga · gb. Finally, since
Sn is not abelian for n ≥ 3 (see above), it must not be cyclic.

(c) Show that the center of an abelian group is the whole group.
If a group is abelian, then gh = hg for any pair g, h ∈ G. The

center of the group is the subgroup Z consisting of those g such that
gh = hg for all h ∈ G. Hence Z = G if G is abelian.

16
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4. Product groups

Let G and H be groups. Define a map

m : (G×H)× (G×H) → G×H, m((g, h), (g�, h�)) = (gg�, hh�).

Note that throughout this problem, 1 may refer to either the group unit of
G, or the group unit of H.

(a) Show that m defines a group structure on G×H.
The identity is (1G, 1H), as

(1G, 1H)(g, h) = (1Gg, 1Hh) = (g, h), and (g, h)(1G, 1H) = (g1G, h1H) = (g, h)

for any (g, h) ∈ G × h. The operation m is associative since G and H
have associative operations:

(g1, h1)((g2, h2)(g3, h3)) = (g1, h1)(g2g3, h2h3)

= (g1(g2g3), h1(h2h3))

= ((g1g2)g3, (h1h2)h3)

= (g1g2, h1h2)(g3, h3)

= ((g1, h1)(g2, h2))(g3, h3).

Finally, the inverse to (g, h) is given by (g−1, h−1), as

(g, h)(g−1, h−1) = (gg−1, hh−1) = (1G, 1H)

and

(g−1, h−1)(g, h) = (g−1g, h−1h) = (1G, 1H).

(b) Show that (g, 1) · (1, h) = (1, h) · (g, 1).

(g, 1)(1, h) = (g1, 1h) = (g, h) = (1g, h1) = (1, h)(g, 1).

(c) Show that if G and H are abelian, then G × H is abelian (with the
above group structure).

(g1, h1)(g2, h2) = (g1g2, h1h2) = (g2g1, h2h1) = (g2, h2)(g1, h1).

(d) Show that the maps

G → G×H g �→ (g, 1)

17
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and
G×H → G, (g, h) �→ g

are group homomorphisms.
Let f : G → G×H be the first map. Then

f(g1g2) = (g1g2, 1) = (g1, 1)(g2, 1) = f(g1)f(g2).

Likewise, let p : G×H → G be the second map. Then

p((g1, h1)(g2, h2)) = p((g1g2, h1h2)) = g1g2 = p((g1, h1)) · p((g2, h2)).

18



Homework 4

1. Subgroups of Z

In this problem, you will show that every subgroup of Z is of the form
nZ for some n ≥ 0.

Let H ⊂ Z be a subgroup which contains some non-zero element. Let
n ∈ H be the least, positive integer inside H. Show that H = nZ. (Hint:
Remainders.)

Assume there is some k ∈ H for which k is not divisible by n. By the
division algorithm, we know that k = an + r for some integer a and some
integer r between 0 and n− 1, inclusive. We also conclude r = �= 0 since k
is not divisible by n. On the other hand, if both k and n are in H, then
r = k − n − . . . − n is in H. So r is some positive integer less than n, but
this contradicts the assumption that n is the least positive integer in H.

2. Conjugation actions

The conjugation action of a group on itself is by far the most important
group action in representation theory. A full understanding of the conju-
gation action can be illusive, and in many contexts, proves quite essential
for research.

(a) Fix an element g ∈ G. Define a map Cg : G → G by h �→ ghg−1. Show
that Cg is a group isomorphism.

If h� is some element inG, let h = g−1h�g. Then Cg(h) = g(g−1h�g)g−1 =
1h�1 = h�. This shows Cg is a surjection. If Cg(h) = 1, then ghg−1 = 1,
so we conclude h = g−1g = 1. This means the kernel of Cg consists
only of 1, meaning Cg is injective. We now need only show that Cg is
a group homomorphism:

Cg(h1h2) = g(h1h2)g
−1 = gh1g

−1gh2g
−1 = (gh1g

−1)(gh2g
−1) = Cg(h1)Cg(h2).

Note that I am freely removing and adding parentheses in the products;
this is justified by associativity.

19
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(b) Show that Cg ◦ Cg� = Cgg� . In other words, the assignment g �→ Cg

defines a group homomorphism G → AutGroup(G). So this defines an-
other group action of G on itself. It is quite different from the action
we have considered earlier, where all we had was a group homomor-
phism G → AutSet(G). This new map, G → AutGroup(G), is called the
conjugation action of G on itself.

Cg◦Cg�(h) = Cg(g
�hg�

−1
) = g(g�hg�

−1
)g−1 = (gg�)h(g�

−1
g−1) = (gg�)h((gg�)−1) = Cgg�(h).

Note I’m using the property of groups that (ab)−1 = b−1a−1.

(c) If G is abelian, show that Cg is trivial for all g ∈ G.
Since G is abelian, ghg−1 = hgg−1 = h for all g, h. Hence Cg(h) =

h for all g, h ∈ G. Put another way, Cg is the identity automorphism
of G, for any choice g.

3. Group isomorphisms in general

Since Cg is a group isomorphism from G to itself, it tells us a lot about
the subgroups and elements of G. This is because of some general properties
of group isomorphisms, which we now explore. Let φ : G → H be a group
isomorphism. If K ⊂ G is a subset, we define

φ(K) = {h ∈ H such that h = φ(g) for some g ∈ K}.

(a) Show that isomorphisms preserve orders of elements. That is, show
that if g is an element of order n, then φ(g) is.

Note that φ defines a map �g� to H, simply by sending gn to φ(g)n.
By definition its image is contained in �φ(g)�, and any element inside
�φ(g)� is of the form φ(g)n, so this map is a surjection onto �φ(g)�.
Moreover, φ is an isomorphism, so its kernel consists only of 1G—this
means the kernel of �g� → H also consists only of 1G. This proves
that �g� → H is an injective group homomorphism with image isomor-
phic to �φ(g)�. By the first isomorphism theorem, �g� and �φ(g)� are
isomorphic, hence have equal order. This shows |g| = |φ(g)|.

(b) Show that if K ⊂ G is a subgroup, it is isomorphic to φ(K).
φ defines a homomorphism from K to G, simply by sending k �→

φ(k). (If you like, this is the composition of the inclusion homomor-
phism K → G with the homomorphism G → H.) The kernel of φ
consists only of the identity, so the map K → H also has trivial ker-
nel. By the first isomorphism theorem, K is isomorphic to the image
of K → H, which by definition is φ(K). (As an side, note that both
(a) and (b) are true simply for injective homomorphisms.)
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(c) Show that isomorphisms preserve normal subgroups. That is, Show
that if K ⊂ G is a normal subgroup, then φ(K) ⊂ H is normal.

If K ⊂ G is normal, then for all g ∈ G, we know that gKg−1 ⊂ K.
So for any g, we have φ(g)φ(K)φ(g−1) = {φ(g)φ(k)φ(g)−1, k ∈ K} =
{φ(gkg−1), k ∈ K} = φ(gKg−1) ⊂ φ(K). (This last inclusion follows
because if we have subsets A ⊂ B, the φ(A) ⊂ φ(B) in general.) On
the other hand, since any h ∈ H can be written φ(g) for some g ∈

G, we see that hφ(K)h−1 = φ(g)φ(K)φ(g)−1 for some g, and hence
hφ(K)h−1 ⊂ φ(K) for all h ∈ H. This proves that φ(K) is normal.
Note that this only required that φ be a surjective homomorphism.

(d) LetK be a normal subgroupG. Show that there is a group isomorphism
G/K ∼= H/φ(K).

We have a quotient homomorphism H → H/φ(K), simply because
φ(K) is normal in H. On the other hand, we have the group isomor-
phism φ : G → H. Consider the composition ψ : G → H → H/φ(K).
This is a surjection because both φ and the quotient map are. So by
the first isomorphism theorem, G/ kerψ ∼= H/φ(K). But the kernel of
ψ is the set of all g such that φ(g) ∈ φ(K); since φ is an injection, this
is the set of all g ∈ K. That is, the kernel is equal to K. By the first
isomorphism theorem, G/K ∼= H/φ(K).

Throughout the following exercises, if you have time, think about what the
above results imply about elements and subgroups of G that are conjugate.

4. Conjugacy classes of elements

(a) Two elements g, g� ∈ G are called conjugate if there exists some h ∈ G
such that

h−1gh = g�.

Show by example that if g and g� are conjugate, the choice of h need
not be unique.

Any element is conjugate to itself; in particular, we could take
g = g� = 1G; then any choice of h ∈ G satisfies the equation h−1gh = g�.
For a less trivial example, consider g = (12), g� = (34) inside S4. Then
either of the following choices for h exhibits g� as a conjugate of g:

h−1 = (1324), (13)(24).

For example,

(1324)(12)(4231) = (34), (13)(24) ((12)) (13)(24) = (34).
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(b) Show that being conjugate defines an equivalence relation on the set
G. That is, show that the relation “g ∼ g� if g is conjugate to g�” is an
equivalence relation. Under this relation, the equivalence class of g is
called the conjugacy class of g.

g is conjugate to itself by choosing h = 1. If g� = h−1gh, then let
k = k−1. Then we see g = k−1g�k; hence the relation is symmetric.
Finally, if g�� = x−1g�x, then

g�� = x−1g�x = x−1h−1ghx = (hx)−1ghx.

This establishes transitivity.

(c) Show that g is the only element in its conjugacy class if and only if g
is in the center of G.

If g is in the center of G, then for any h ∈ G, we have that
h−1gh = h−1hg = g. Hence the only element conjugate to g is g
itself. Conversely, if g is conjugate only to itself, this means that for
every h ∈ G, we have h−1gh = g. B multiplying both sides of the
equation by h on the left, we see that gh = hg. Since this is true for
any h ∈ G, this shows g is in the center of G.

5. Conjugacy classes of subgroups

Let H and H � be subgroups of G. We say H and H � are conjugate if
there is some g such that

Cg(H) = H �.

That is, if gHg−1 = {ghg−1, h ∈ H} = H � for some g.

(a) Show that being conjugate defines an equivalence relation on the set of
all subgroups of G. That is, show that the relation “H ∼ H � if H is
conjugate to H �” is an equivalence relation. The equivalence class of
H under this relation is called the conjugacy class of H.

Any H is conjugate to itself, since C1(H) = {1h1−1} = {h} = H.
This shows reflexivity. If Cg(H) = H �, then we see that Cg−1(H �) = H
as follows:

Cg−1(H �) = {g−1h�g s.t. h�
∈ H �

} = {g−1(ghg−1)g s.t. h ∈ H} = H.

The middle equality is using, of course, that any h� ∈ H � is of the form
ghg−1 for some h ∈ H, and that any element of the form ghg−1 is
in H �. So we are left to show transitivity: Well, if Cg(H) = H � and
Cx(H �) = H ��, then Cx ◦Cg(H) = H ��. (This is just a statement about
what functions C do to subsets.) We are finished.

(b) Show that H is the only element in its conjugacy class if and only if H
is normal.
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If H is the only element in its conjugacy class, we see that for all
g ∈ G, Cg(H) = gHg−1 = H. This is the definition of being a normal
subgroup. Finally, if H is normal, then gHg−1 = H for any g, so the
only subgroup conjugate to H is H itself.
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