
Cluster A: Getting a feel for groups

Pre-requisites.

I assume you are familiar with basic notions of sets, injections, bijec-
tions, and proof. Other than that, the only facts you need are the following:

Definition 0.1 (What’s a group?). A group is a pair (G,m) where G
is a set, and m is a map

m : G×G → G.

We will usually write1

m(g, h) := g · h := gh.

The pair (G,m) must satisfy the following:

• (Identity)There exists an element 1 ∈ G such that 1 · g = g · 1 = g
for all g ∈ G.

• (Inverses) For every element g ∈ G, there exists an element (possi-
bly different, possibly the same) g−1 such that gg−1 = g−1g = 1,
and

• (Associativity) g(hk) = (gh)k for all g, h, k ∈ G.

The map m is called the group multiplication, the multiplication, or the
group operation, of the group.

Remark 0.2. Be warned that gh �= hg in general. Note that we are
already writing gh instead of g · h, or of m(g, h).

Remark 0.3. We will often write a group simply as G, and not (G,m),
although m is necessarily part of the data. The notation G simply means
that the group operation should be understood: For instance, Z is usually
understood to mean the set of integers together with usual addition of
integers as the group operation.

1Depending on context, we may sometimes write g · h, while we may other times
write gh for brevity. This is the same convention as in multiplying variables in standard
high school algebra.

1



Fall 2014 Math 122 Homework

Remark 0.4. The existence of inverses allows us to use the cancellation
law. That is, if a, b, c are elements of a group G, we have the implication

ab = ac =⇒ b = c.

This is because we can multiply both sides of the equation by a−1 and
conclude a−1(ab) = (a−1a)b = 1b = b. Notice that we are using every
property of a group—the identity, inverses, and associativity—in proving
the cancellation law.

Definition 0.5 (Group homomorphisms and isomorphisms). Let G
and H be groups. A group homomorphism is a map of sets

φ : G → H

such that
φ(gg�) = φ(g)φ(g�).

(I.e., φ respects multiplication.) An isomorphism of groups is a group
homomorphism φ : G → H which is also a bijection of sets.

Definition 0.6 (Subgroups). Let G be a group. A subset H ⊂ G is
called a subgroup if

• H contains the identity of G,
• If h ∈ H, then h−1 ∈ G is also in H, and
• If h and h� are in H, then so are hh� and h�h.

0.1. Goals. The goal of these problems is to start becoming familiar
with the kinds of manipulations we’ll want to do computations with groups.

1. Some basics

(a) Show that the empty set does not admit a group structure.

(b) Show that the identity element of a group G is unique. (That is, if two
elements 1 and 1� satisfy the defining property of the identity element,
then 1 = 1�.)

(c) Given an element g ∈ G, show that g−1 is unique. (That is, given
elements h, h� satisfying the defining property of g−1, show that h = h�.)

(d) Let G and H be two groups such that each group contains only one
element. Show that G and H are isomorphic as groups. (That is, there
is a unique group of cardinality 1.)

(e) Let G and H be two groups such that each group contains only two
elements. Show that G and H are isomorphic as groups.
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(f) If you have the free time, let G and H be two groups such that each
group contains only three elements. Show that G and H are isomorphic
as groups. (This will become much easier to once we have Lagrange’s
Theorem.)

(g) Let φ : G → H be a group isomorphism between two groups. Since φ
is a bijection, there is a unique inverse map of sets ψ : H → G. Show
that ψ must be a group homomorphism.

(h) Show g = g2 in a group G if and only if g = 1.

(i) If φ : G → H is a group homomorphism, show that φ sends the identity
of G to the identity of H.

(j) If φ : G → H is a group homomorphism, show that φ(g−1) = φ(g)−1.

2. Group homomorphisms versus maps of sets

Let φ3 : Z → Z be the map φ3(n) = 3n. So for instance, φ(2) = 6. We
think of the integers as a group under addition.

(a) Show that φ3 is a group homomorphism.

(b) Show that there exists a map of sets ψ : Z → Z such that ψ ◦ φ3 = idZ.

(c) Show that no choice of such a ψ can be a group homomorphism.

(d) For any integer k, define a map of sets φk : Z → Z by φ(n) = kn. Show
this defines a group homomorphism from Z to Z. Determine all k for
which this map is an isomorphism.

3. Orders of group elements

(a) Show that the non-zero complex numbers, written C×, form a group
under multiplication.

(b) For any element g ∈ G, we will always write the expression g · g · . . . · g
(with n appearances of g) as gn. By convention, g0 is the identity of
a group. Show that for all n ≥ 0, C× contains an element z for which
zn = 1.

(c) Given an element g ∈ G of a group, the smallest, non-zero number n
for which gn = 1 is called the order of g. If gn never equals 1, we say g
is an element of infinite order. Show that Z only has elements of order
1 or infinity.
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4. Product groups

Let G and H be groups. Define a map

m : (G×H)× (G×H) → G×H, m((g, h), (g�, h�)) = (gg�, hh�).

Note that throughout this problem, 1 may refer to either the group unit of
G, or the group unit of H.

(a) Show that m defines a group structure on G×H.

(b) Show that (g, 1) · (1, h) = (1, h) · (g, 1).

(c) Recall that a group A is called abelian if for all a, a� ∈ A, we have
aa� = a�a. Show that if G and H are abelian, then G × H is abelian
(with the above group structure).

(d) Show that Z2 = Z× Z is a subgroup of R2 = R× R.

(e) Show that the maps G → G×H, g �→ (g, 1) and G×H → G, (g, h) �→ g
are group homomorphisms.

5. The set of automorphisms is a group

We mentioned in class that groups are a useful language for describing
symmetries of an object. What do we mean by a symmetry? A symmetry
is an invertible operation from a mathematical object to itself, preserving
some structure. Here we explore examples of this idea.

(a) Fix a set S. Let Aut(S) be the set of all bijections S → S. Note there
is a map Aut(S) × Aut(S) → Aut(S) given by composing bijections.
Show that this gives a group structure on Aut(S). (Using the above
philosophy, the mathematical object is a set S, and we view it as having
no structure save the fact that S is a set.)

(b) Now fix a group G. Let AutGroup(G) be the set of all group isomor-
phisms fromG to itself. Show that AutGroup(G) is itself a group. (Using
the above philosophy, the mathematical object is G, and the structure
we’re preserving is its group structure—i.e., the identity and multipli-
cation.)

(c) (*) If you know what a topological space is, let X be a topological
space, and Aut(X) the set of homeomorphisms from X to itself. Show
that Aut(X) is a group.

(d) Fix n ≥ 1. Show that GLn(C)—the the set of n×n complex, invertible
matrices—form a group. Show the same is true for GLn(R). (Using the
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philosophy above, this is the set of all operations on an n-dimensional
vector space that preserve the structure of linearity.)

(e) Fix n ≥ 1. Show that SLn(C)—the set of n×n complex matrices with
determinant 1—form a group. Likewise for SLn(R). (Using the philos-
ophy above, this is the set of all operations on an n-dimensional vector
space that preserve the structure of linearity and oriented volume.)

(f) For any n ≥ 1, show that O(n)—the set of n × n real orthogonal
matrices—form a group. (Using the philosophy above, this is the set
of all operations on an n-dimensional vector space that preserve the
structure of linearity and inner product.)

6. Extras

(a) Let H and K be subgroups of G. Show their intersection is a subgroup.

(b) Given a group G = (G,m), define the opposite group Gop = (G,w) by
the operation

w(g, h) := m(h, g).

That is, Gop as a set is the same set as G, but its multiplication happens
in the opposite order. Show that Gop is a group.

(c) Show that the map G → Gop given by g �→ g−1 is a group isomorphism.

(d) Let φ : G → H be a group homomorphism. The kernel of φ, written
kerφ, is the set of all g for which φ(g) = 1. Show that the kernel of any
group homomorphism is a subgroup of G.

(e) The image of φ is the set of all h ∈ H such that h = φ(g) for some
g ∈ G. Show that for any group homomorphism φ : G → H, the image
of φ is a subgroup of H.

7. The sign representation

(a) Let Sn be the symmetric group on n elements. (Automorphisms of a set
of n elements.) For every element σ ∈ Sn, let φ(σ) be the n×n matrix
which sends the standard basis vector ei ∈ Rn to the vector eσ(i). Show
that the assignment φ : Sn → GLn(R) is a group homomorphism.

(b) List every element σ ∈ S3 and write out the matrix φ(σ) for each of
them.
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(c) Show that the determinant defines a group homomorphism det : GLn →
R×, which sends A �→ detA. (You may use properties of determinants
you learned from linear algebra class.) What is the special name we
usually give to the kernel of this map?

(d) Consider the composite group homomorphism Sn → GLn → R×. We
call this the sign representation of Sn. What is its image? (It is a
subgroup of R×.)

8. Linear maps of integers

By the above exercise, the set Z2 := Z × Z is a group. (In fact, an
abelian group.) Consider a 2x2 integer matrix

A =

�
a b
c d

�

which defines a map Z2 → Z2 in the usual way that matrices do. Specifi-
cally, given an element (x, y) ∈ Z2, the map sends

(x, y) �→ (ax+ cy, bx+ dy).

(a) Show that the above map is always a group homomorphism from Z2 to
Z2.

(b) Determine when A is an injective group homomorphism, using the de-
terminant of A.

(c) Determine when A is a group isomorphism, using the determinant of
A.

9. Some fun linear algebra

(a) Let n be an odd, non-zero integer. Show that every element of O(n)
has 1 as an eigenvalue. (Hint: What happens when you apply AT to
A− I?)
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