
Homework Nine

1. The third isomorphism theorem for groups

In this problem, G need not be finite. Suppose A ⊂ B ⊂ G are sub-
groups, and that A,B � G. Building on last week’s homework, exhibit an
isomorphism

ψ : G/B → (G/A)/(B/A).

You have proven the third isomorphism theorem. (And in case you’re keep-
ing count, don’t worry—you haven’t missed the second isomorphism theo-
rem. We just haven’t talked about it yet.)

2. Maps of quotients

Let A1, A2 and B1, B2 be abelian groups. Suppose we are given homo-
morphisms

A1
i ��

f

��

A2

g

��
B1

j �� B2

so that the above diagram commutes. This means that gi = jf as group
homomorphisms.

(a) Prove that the map sending [a] to [g(a)] is a well-defined group ho-
momorphism from the quotient group A2/i(A1) to the quotient group
B2/j(B1).

(b) Prove, without using any formulas involving group elements the exis-
tence and uniqueness of such a map. (Hint: Universal properties. You
may use formulas involving equalities of functions, but don’t ever write
down elements of groups! It may help to give names to the homomor-
phisms A2 → A2/i(A1) and B2 → B2/j(B1).)

35



Fall 2014 Math 122 Homework

3. Polynomial rings and power series rings

Let R be a commutative ring. Let R[[x]] be the set of power series with
coefficients in R. Explicitly, an element of R[[x]] is a power series

p(x) = a0 + a1x+ a2x
2 + . . . .

We may write this as

p(x) =
∞�

i=0

aix
i.

(As you’re getting used to things, it may be useful for you to think of
an element of R[x] as equivalent information to an ordered sequence

(a0, a1, . . .) ∈ R×R× . . .

where each ai ∈ R.)
If p and q are two power series with coefficients ai and bi, respectively,

we define p+ q to be the power series whose ith coefficient is ai + bi. That
is,

(p+ q)(x) =
�

i≥0

(ai + bi)x
i.

We define the product power series to have kth coefficient given by
�

i+j=k

aibj .

That is,

(pq)(x) =
�

k≥0

(
�

i+j=k

aibj)x
k.

Remark. As an explicit reminder, two power series
�

aixi and
�

bixi

are equal if and only if ai = bi for all i.
Remark. Also as a warning, note that there is no notion of convergence

going on here. For instance, if the ring R is Z/nZ, there is no obvious way
of talking about convergence of a power series. This is why—if you want
to divorce the notion of power series in calculus from the formal algebraic
manipulations we’ll do here—it may help to now and then think of a power
series simply as a sequence of elements of R.

(a) Prove that R[[x]] is a commutative ring under the addition and product
operations above.

Let R[x] ⊂ R[[x]] be the subset of power series for which there exists
some n ∈ Z≥0 such that i > n =⇒ ai = 0. That is, R[x] is the set of
polynomials with coefficients in R.
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(b) Show that the sum of two elements of R[x] is again in R[x], and likewise
with products.

(c) Show that both the additive and multiplicative units of R[[x]] are in
R[x].

(d) Explain why you’ve shown that R[x] is a ring.

If p(x) is not the zero polynomial, we call the largest i for which ai �= 0
the degree of the polynomial. If p(x) is the zero polynomial, we will
informally say that its degree is −∞.

(e) Prove that deg(fg) = deg f + deg g, with the obvious convention for
what it means to add −∞ to a number.

4. Modules as an abelian group with a ring action

Let M be an abelian group. An endomorphism of M is a group homo-
morphism from M to itself. Let End(M) denote the set of endomorphisms
from M to itself. There are two operations

+ : End(M)×End(M) → End(M) and ◦ : End(M)×End(M) → End(M)

The first is defined as follows: given two endomorphisms f and g, we obtain
a third endomorphism f + g by declaring

(f + g)(x) := f(x) + g(x)

for all x ∈ M . The second, ◦, is the usual composition of functions.

(a) Show that End(M) is an abelian group under the operation of adding
functions. That is,

(b) Let ◦ denote the composition of functions. Show that (End(M),+, ◦)
is a ring.

(c) Show that an R-module structure on M is the same thing as a ring
homomorphism

R → End(M).

Philosophically, this is the same thing as saying that a group action on
a set is the same thing as a group homomorphism

G → Aut(X).

There, Aut(X) consists of maps respects the property of cardinality of X.
For modules, End(M) consists of maps respecting the structure of additivity
of X.
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