Homework Seven

1. Rotational symmetries of the cube

(a) Using the orbit-stabilizer theorem, compute the number of elements in the group of rotations of \mathbb{R}^{3} that send a perfect cube (centered at the origin) to itself. You might consider looking at faces, and not vertices.
(b) What if, instead of the cube, you consider a regular octahedron (also centered at the origin)? You should note that the regular octahedron can be drawn inside a cube, with each vertex of the octahedron at the center of a face of the cube.

2. Inner product on \mathbb{R}^{n}

Recall that the dot product sends a pair $\vec{x}, \vec{y} \in \mathbb{R}^{n}$ to the real number

$$
\vec{x} \cdot \vec{y}:=x_{1} y_{1}+\ldots x_{n} y_{n} .
$$

Equivalently, if one thinks of \vec{x} and \vec{y} as column vectors-i.e., as $n \times 1$ matrices-we have

$$
\vec{x} \cdot \vec{y}=x^{T} y
$$

We say \vec{x} and \vec{y} are orthogonal if $\vec{x} \cdot \vec{y}=0$. We also note that

$$
\vec{x} \cdot \vec{y}=\vec{y} \cdot \vec{x}, \quad \text { and } \quad\left(t \vec{x}+\vec{x}^{\prime}\right) \cdot \vec{y}=t \vec{x} \cdot \vec{y}+\vec{x}^{\prime} \cdot \vec{y}
$$

Show that the following are equivalent for an $n \times n$ matrix A :
(a) $A^{T} A=I$. (I.e., $A \in O_{n}(\mathbb{R})$.)
(b) A preserves the dot product. That is, $A \vec{x} \cdot A \vec{y}=\vec{x} \cdot \vec{y}$ for every $\vec{x}, \vec{y} \in \mathbb{R}^{n}$. (Hint: Use that the inner product is a multiplication of a column vector and a row vector.)
(c) The columns of A are mutually orthogonal vectors of unit norm. (Hint: Every entry resulting from a matrix multiplication is a dot product of a row with a column.)

3. Rotations

(a) Let n be odd. Prove that any matrix $A \in S O_{n}(\mathbb{R})$ has at least one eigenvector with eigenvalue 1. (Hint: Show that $\operatorname{det}(A-I)=\operatorname{det}(I-A)$ by using the fact that $A^{T}(A-I)=(I-A)^{T}$.)
(b) Show that any $A \in S_{3}(\mathbb{R})$ fixes a non-zero vector v, and A is rotation about this vector. (Hint: A is orthogonal, so it preserves dot products. What can you say about A 's effect on the plane orthogonal to v ?)
(c) By a rotation in \mathbb{R}^{3}, we mean the linear map which rotates \mathbb{R}^{3} about some line through the origin. Show that the composition of two rotations is again a rotation (even if their axes of rotation do not agree!). Don't try to do this by computational brute force.

So $S O_{3}(\mathbb{R})$ is the group of rotations in \mathbb{R}^{3}. (Likewise, you saw last week that $S O_{2}(\mathbb{R})$ is the group of rotations in \mathbb{R}^{2}, by seeing that $S O_{2}(\mathbb{R})$ is isomorphic to the circle.) This is a very special situation; in no other dimension does it hold that an element of $S O_{n}(\mathbb{R})$ is automatically a rotation about some axis.
(d) Show by example that $S O_{4}(\mathbb{R})$ has an element which does not fix any vector.

4. Automorphisms of a cyclic group

Let C_{n} be a finite cyclic group of order n. (So, for instance, it is isomorphic to $\mathbb{Z} / n \mathbb{Z}$.) Let $\phi(n)$ be the number of $1 \leq k \leq n$ for which $\operatorname{gcd}(k, n)=1 . \phi$ is called Euler's totient function.
(a) Show that $\left|\operatorname{Aut}\left(C_{n}\right)\right|=\phi(n)$. (Hint: Show that an automorphism must send a generator to a generator. Then what?)
(b) Show that there are only two isomorphisms types of groups that can be obtained as a semidirect product $\mathbb{Z} / 6 \mathbb{Z} \rtimes \mathbb{Z} / 2 \mathbb{Z}$. What are they? (Hint: What are the possible maps from $\mathbb{Z} / 2 \mathbb{Z}$ to $\operatorname{Aut}(\mathbb{Z} / 6 \mathbb{Z})$?)

