Homework 3

1. Cosets of S_3 with respect to S_2

Let S_3 be the symmetric group on 3 elements. Recall that this is the set of all bijections from <u>3</u> to itself, where <u>3</u> = {1,2,3}. Let $H \subset S_3$ be the set of all bijections $\tau : \underline{3} \to \underline{3}$ such that $\tau(3) = 3$ —i.e., the subset of all bijections that fix 3.

- (a) Show H is a subgroup of S_3 .
- (b) So H acts on $G = S_3$. How many elements are there in the orbit space? That is, how many orbits are there?
- (c) Finally, write out each orbit explicitly. This means you must write out which elements of S_3 are in each orbit.
- (d) For any $n \ge 1$, let $H \subset S_n$ be the subgroup of all elements that fix n. Exhibit an isomorphism from H to S_{n-1} .
- (e) How many orbits are there of the action of H on S_n ?

2. Cyclic groups

A group G is called *cyclic* if there exists $g \in G$ for which $\langle g \rangle = G$.

- (a) Show that if two cyclic groups have the same order (finite or otherwise) then they must be isomorphic.
- (b) Show that S_2 is cyclic.
- (c) Show that \mathbb{Z} is cyclic.
- (d) Use Lagrange's theorem to show that any group of prime order must be cyclic. (Hint: Last homework.)
- (e) Prove that for any integer $n \ge 1$, there exists a cyclic group of order n. For instance, as a subgroup of S_n , or of $GL_2(\mathbb{R})$, or of \mathbb{C}^{\times} .

3. Abelian groups

A group G is called *abelian* if for all $g_1, g_2 \in G$, we have $g_1g_2 = g_2g_1$.

- (a) Show that S_n is not abelian for any $n \ge 3$.
- (b) Show that any cyclic group is abelian. Conclude that S_n is not cyclic for any $n \ge 3$.
- (c) Show that the center of an abelian group is the whole group.

4. Product groups

Let G and H be groups. Define a map

 $m: (G \times H) \times (G \times H) \to G \times H, \qquad m((g,h),(g',h')) = (gg',hh').$

Note that throughout this problem, 1 may refer to either the group unit of G, or the group unit of H.

- (a) Show that m defines a group structure on $G \times H$.
- (b) Show that $(g, 1) \cdot (1, h) = (1, h) \cdot (g, 1)$.
- (c) Show that if G and H are abelian, then $G \times H$ is abelian (with the above group structure).
- (d) Show that the maps

$$G \to G \times H$$
 $g \mapsto (g, 1)$

and

$$G\times H\to G,\qquad (g,h)\mapsto g$$

are group homomorphisms.