
Math 122 Fall 2014 Practice Problems for Final

Practice Problems for matrices and Cayley-Hamilton

1. Basics in characteristic polynomials

(a) Let F be a field, and A a k× k matrix with entries in F . Show that A
is not conjugate to an upper-triangular matrix unless its characteristic
polynomial can be factored into (possibly non-distinct) linear polyno-
mials in F [t].

(b) Given an example of a matrix in a field F whose characteristic polyno-
mial cannot be factored into linear polynomials.

(c) Prove that if A is a k × k matrix with entries in a field F , its charac-
teristic polynomial ∆(t) is a degree k polynomial in F [t], and that the
degree k − 1 coefficient of ∆(t) is −tr(A). (Here, tr(A) is the trace of
A—the sum of its diagonal entries.)

(d) Prove that the constant term of ∆(t) is (−1)k detA.

2. Matrices are linear transformations

Let R be a commutative ring and R⊕k the free module on k generators.
Show there is a ring isomorphism

T : Mk×k(R)→ homR(R⊕k, R⊕k)

given by sending a matrix A to the homomorphism TA sending the ith
standard basis element of R⊕k to the element

k∑
j=1

Ajiej .

If you are lazy and don’t want to do every part of the proof, here is the most
important part: prove that TAB = TA ◦ TB , so that matrix multiplication
is sent to composition of functions.

Remark 2.1. (Recall that a homomorphism from R⊕k to any module
M is determined by the choice of k elements x1, . . . , xk in M , simply be
declaring that ei ∈ R⊕k get sent to xi.)

Remark 2.2. To be clear, the target of T is the set of all left R-module
homomorphisms from R⊕k to itself.

Remark 2.3. By the way, this ring isomorphism is the justification
for saying that a linear map from a finite-dimensional vector space over F
to itself is the same thing as a matrix—in this case, R = F , and every
finite-dimensional vector space over F is isomorphic to F⊕k for some k.
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3. Some Cayley-Hamilton applications

Let F be a field of characteristic p. Let A be an upper-triangular k× k
matrix with entries in F.

(a) Assume A’s diagonal entries are equal to 1. Show that for the values
(3, 3), (5, 5), and (4, 2) of (k, p), Ak is equal to (−1)k−1I.

(b) With the hypothesis as in part (a), prove that A is an element whose
order must divide k or 2k.

4. More Cayley-Hamilton

Let F be a field and A an k × k matrix with entries in F . When you
want to compute f(A) where f(t) is some high-degree polynomial in t, note
that by the division algorithm for polynomials, we can write

f(t) = q(t)∆(t) + r(t)

where ∆(t) is the characteristic polynomial of A. Then we have

f(A) = q(A)∆(A) + r(A) = r(A)

since ∆(A) = 0 by the Cayley-Hamilton theorem. This reduces a potential
costly calculation into two steps: A division of polynomials (to find r) and
then a degree k − 1 computation given by evaluating r(A).

(a) If A is a 2 × 2 matrix which is not invertible in F , prove that A2 is
always a scalar multiple of A. Moreover, prove that A2 is obtained
from A by scaling via the trace of A.

(b) Let A be a 3 × 3 matrix which is not invertible, and which has trace
zero. Compute A1000 in terms of A2 and the degree 1 coefficient of
∆(t). Derive a general formula for AN in terms of A2 and the degree 2
coefficient of ∆(t).

(c) Let

A =

 1 2 3
1 0 −1
5 2 −1

 .
Compute A2014 using the methods above.

(d) What is A2014 if you consider A as a matrix with entries in F = Z/2Z?

Rings and ideals

5. Basics of rings

(a) Give an example of a non-commutative ring with a zero divisor. (Make
sure to identify the zero divisor.)

(b) Given an example of a commutative ring with a zero divisor.
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6. Prime ideals

Let R be a commutative ring. An ideal I is called prime if whenever
xy ∈ I, we have that either x ∈ I or y ∈ I.

(a) Let f ∈ R be an irreducible element and R a PID. Show that the ideal
generated by f is prime.

(b) Recall that a commutative ring is called a domain if it has no zero
divisors. Show that if I is a prime ideal of R, then R/I is a domain.

7. Prime ideals and maximal ideals

Let R be a commutative ring.

(a) Show that every maximal ideal in R is a prime ideal.
(b) Show that if R is a PID, then every non-zero prime ideal is maximal.

8. A ring that is not a PID

(a) Let F be a field, and let R = F [x1, x2] be the ring of polynomials with
two variables. Exhibit an ideal in R that is not principal.

(b) Show that Z[x]—the ring of polynomials with Z coefficients—is not a
principal ideal domain.

Modules

9. Z-modules

(a) Show that a Z-module is the same thing as an abelian group.
(b) Show that a map of Z-modules (i.e., a Z-linear homomorphism between

Z-modules) is the same thing as a homomorphism of abelian groups.

10. Z[t]-modules

Show that a Z[t]-module structure on an abelian group M is the same
thing as giving an abelian group homomorphism from M to itself.

11. Submodules

Let M be a left R-module. Recall that an R-submodule of M is a
subgroup N ⊂M such that rx ∈ N for all r ∈ R, x ∈ N .

(a) Show that the intersection of two submodules is a submodule.
(b) If R is a commutative ring and R = M , show that a submodule of M

is the same thing as an ideal of R.

12. Not all modules are free

Give an example of a ring R and a left module M such that M is not
isomorphic to a free R-module.
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Computations

13. Computations with matrices

Consider the matrices[
1 4
5 7

]
,

[
1 3
7 9

]
,

[
2 4
6 8

]
.

(a) Which of them are invertible as elements of M2×2(Z)?
(b) Which are invertible as elements of M2×2(Z/2Z)?
(c) Which are invertible as elements of M2×2(Z/7Z)?

14. Polynomial roots

Consider the polynomials

t3 + 2t+ 1, t4 + 1, t2 + 3.

(a) Which of these are irreducible elements of Z/2Z[t]?
(b) Which of these are irreducible elements of Z/3Z[t]?
(c) Which of these are irreducible elements of Z/5Z[t]?

Classification of finitely generated PIDs

15. Statement

State the classification of finitely generated modules over a PID.

16. Classifying abelian groups

(a) How does the theorem let us classify finitely generated abelian groups?
(b) Classify all abelian groups of order 12.
(c) Classify all abelian groups of order 16.

17. Another way to phrase classification of abelian groups

(a) Let k,m, n be integers. Prove that Z/kZ ∼= Z/mZ× Z/nZ if and only
if k = mn and m,n are relatively prime.

(b) Assume the classification of finitely generated abelian groups stated in
class. Prove: If A is a finitely generated abelian group, it is isomorphic
to a group of the form

Z/n1Z⊕ . . .⊕ Z/nkZ

where ni divides ni+1 for all 1 ≤ i ≤ k − 1.
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Groups

18. Your common mistakes

(a) Give an example of a group G, and an abelian subgroup H ⊂ G, such
that H is not normal in G.

(b) Given an example of a group G, and a sequence of subgroups

G1 ⊂ G2 ⊂ G
such that G1 / G2 and G2 / G, but G1 is not normal in G.

19. Sylow’s Theorems

Let np denote the number of Sylow p-subgroups of G.

(a) * Let G = S4. Compute n2.
(b) Let G = S4. Compute n3.
(c) Let G = D2p, the dihedral group with 2p elements, where p > 2 is a

prime. Compute n2 and np.

20. Actions and orbit-stabilizer

(a) Show that H / G if and only if the normalizer of H is all of G.
(b) Let G be a finite group, and H ⊂ G a subgroup. Show that the number

of subgroups of G conjugate to H is equal to the size of G, divided by
the order of the normalizer of H.

(c) Let x ∈ G be an element, with |G| finite. Show that the number of
elements conjugate to x is equal to the size of G, divided by the number
of elements that commute with x.

21. Prove Lagrange’s Theorem

Prove Lagrange’s Theorem.

22. Cayley’s Theorem

(a) Show that every group acts on itself.
(b) Show that every finite group is isomorphic to a subgroup of Sn for some

n. This is called Cayley’s Theorem.

23. Groups of order 8

Recall the quaternion ring, otherwise called the Hamiltonians. Consider
the set

Q = {±1,±i,±j,±k} ⊂ R4

where

1 = (1, 0, 0, 0) i = (0, 1, 0, 0) j = (0, 0, 1, 0) k = (0, 0, 0, 1).
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(a) Show that Q is a group of order 8.
(b) Show that Q is non-abelian.
(c) Write down all subgroups of Q.
(d) * Show that Q is not isomorphic to D2·4 = D8, the dihedral group with

8 elements.

24. Some big theorems

(a) Let p be a prime number. If n ∈ Z is not divisible by p, prove that

np−1 − 1

is divisible by p. This is called Fermat’s Little Theorem. (Hint: If
Z/pZ is a field, what can you say about Z/pZ− {0}?)

(b) Show that every finite group is isomorphic to a subgroup of Sn for some
n. This is called Cayley’s Theorem. (Hint: Every group acts on itself
by left multiplication.)
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Terms you’ll need to know

(1) Group
(2) Finite group
(3) Isomorphism
(4) Subgroup
(5) Homomorphism
(6) Trivial homomorphism (i.e., one whose image is {1})
(7) Order of an element g (size of 〈g〉—equivalently, smallest n ≥ 1

for which gn = 1. Orders can be infinite.)
(8) Order of a group (number of elements in the group—possibly in-

finite.)
(9) Abelian group

(10) p-Sylow subgroup
(11) Normal subgroup
(12) Quotient group
(13) Simple group
(14) Automorphisms of a set (i.e., a bijection from a set to itself)
(15) Automorphisms of a group (i.e., a group isomorphism from a

group to itself)
(16) Group action
(17) Orbits
(18) Disjoint union
(19) Center of a group (the set of all x such that gx = xg for all g ∈ G.)
(20) Direct product of groups
(21) Semidirect product
(22) Characteristic polynomial of a matrix with entries in a field F
(23) Ring
(24) Multiplicative identity of a ring
(25) Additive identity of a ring
(26) Ring homomorphism (remember that 1 must be sent to 1!)
(27) Left R-module (sometimes, simply called an R-module; especially

if R is commutative)
(28) A homomorphism of left R-modules (a.k.a. R-linear map)
(29) Direct sum M ⊕N of R-modules
(30) Ideals
(31) Ideal generated by a single element
(32) Quotient rings
(33) Field
(34) Vector space (i.e., a module over a field)
(35) Algebraically closed field
(36) Polynomial ring F [t]
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(37) Irreducible polynomial
(38) Upper triangular matrix
(39) Cayley-Hamilton Theorem
(40) Relatively prime numbers (i.e., those such that gcd = 1.)
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Some of the ideas you’ll want to know (emphasis on “some”)

(1) How to pass from semidirect products to split short exact se-
quences (Given Loφ R, there is the inclusion L→ Loφ R given
by l 7→ (l, 1R) and j : R→ Loφ R given by j(r) = (1L, r). Then
the short exact sequence L→ Loφ R→ R is split by j.)

(2) How to pass from split short exact sequences to semidirect prod-
ucts (L→ H → R, j : R → H means j(R) acts on L by conjuga-
tion, meaning one has a homomorphsim φ : R ∼= j(R)→ Aut(L),
so a semidirect product L oφ R. You haven’t lost information
because the map Loφ R → H given by (l, r) 7→ l · j(r) is an iso-
morphism, and LoφR has the obvious split short exact sequences
L → L oφ R → R,R → L oφ R. We are identifying L with its
image in H.)

(3) Classify all abelian groups of finite order
(4) Classification theorem of finitely generated modules over a PID
(5) Using Sylow’s Theorems to count Sylow subgroups
(6) Characteristic polynomials don’t change under conjugation—so

det(tI − A) = det tI − BAB−1), regardless of the field in which
the A takes entries.
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