Math 122 Fall 2014 Solutions to Practice Problems for Final

Practice Problems for matrices and Cayley-Hamilton

1. Basics in characteristic polynomials

(a) Let F be a field, and A a $k \times k$ matrix with entries in F. Show that A is not conjugate to an upper-triangular matrix unless its characteristic polynomial can be factored into (possibly non-distinct) linear polynomials in $F[t]$.
(b) Given an example of a matrix in a field F whose characteristic polynomial cannot be factored into linear polynomials.
(c) Prove that if A is a $k \times k$ matrix with entries in a field F, its characteristic polynomial $\Delta(t)$ is a degree k polynomial in $F[t]$, and that the degree $k-1$ coefficient of $\Delta(t)$ is $-\operatorname{tr}(A)$. (Here, $\operatorname{tr}(A)$ is the trace of A-the sum of its diagonal entries.)
(d) Prove that the constant term of $\Delta(t)$ is $(-1)^{k} \operatorname{det} A$.
(a) Suppose that A is conjugate to an upper-triangular matrix, so $T=$ $B A B^{-1}$ where T is upper-triangular and B is invertible. Recall the characteristic polynomial of T and A are the same, because

$$
\operatorname{det}(t I-T)=\operatorname{det}\left(t I-B A B^{-1}\right)=\operatorname{det}\left(B(t I-A) B^{-1}\right)=\operatorname{det} B \operatorname{det} B^{-1}(t I-A)=\operatorname{det}(t I-A)
$$

On the other hand,

$$
t I-T=\left[\begin{array}{cccc}
t-T_{11} & -T_{12} & \ldots & -T_{1 k} \\
0 & t-T_{22} & \ldots & -T_{2 k} \\
0 & 0 & \ldots & \vdots \\
0 & 0 & \ldots & t-T_{k k}
\end{array}\right]
$$

is an upper-triangular matrix, so its determinant is given by multiplying its diagonal entries:

$$
\operatorname{det}(t I-T)=\left(t-T_{11}\right) \ldots\left(t-T_{k k}\right)
$$

so the characteristic polynomial of A factors into linear polynomials.
(b) Let us choose $\mathbb{R}=F$ to be our field. We know \mathbb{R} has no square root of -1 , so we reverse-engineer a matrix whose characteristic polynomial is $t^{2}+1=0$. For instance,

$$
\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

(c) For a field F, consider an injective ring homomorphism $F \hookrightarrow \bar{F}$ into an algebraically closed field \bar{F}. Any matrix $A \in M_{k \times k}(F)$ is conjugate to an upper-triangular matrix with entries in \bar{F} (by the classification

Fall 2014 Math 122 Final Practice
of finitely generated modules over PIDs). And the characteristic polynomial of an upper-triangular matrix is

$$
\operatorname{det}(t I-T)=\left(t-T_{11}\right) \ldots\left(t-T_{k k}\right)
$$

which is clearly a degree k polynomial. Moreover, the characteristic polynomial of A is unchanged by conjugation, so we conclude that the characteristic polynomial of A is also degree k. (Note that each linear factor, $t-T_{i i}$, is a polynomial in $\bar{F}[t]$, but may not be a polynomial in $F[t]$.) To prove the statement about trace: Note that the degree $k-1$ portion of the above polynomial is given by

$$
-T_{11}-\ldots-T_{k k}=-\operatorname{tr}(T)
$$

But trace is also left unchanged by conjugation. Here is a two-step proof: First,
$\operatorname{tr}(A B)=\sum_{i=1}^{k}(A B)_{i} i=\sum_{i=1}^{k} \sum_{j=1}^{k} A_{i j} B_{j i}=\sum_{i=1}^{k} \sum_{j=1}^{k} B_{j i} A_{i j}=\sum_{j=1}^{k} \sum_{i=1}^{k} B_{j i} A_{i j}=\sum_{j=1}^{k}(B A)_{j j}=\operatorname{tr}(B A)$.
Plugging in $B=D^{-1} C$ and $A=D$, we see that

$$
\operatorname{tr} D^{-1} C D=\operatorname{tr} C
$$

Since the trace of T is given by $-\operatorname{tr}(T)$, the trace of the original matrix is also given by negative its trace.
(d) Here are two proofs: Again, use that determinants are also unchanged by conjugation. So $\operatorname{det}(A)=\operatorname{det}(T)$ if T is an upper-triangular matrix conjugate to A. The constant term of $\left(t-T_{11}\right) \ldots\left(t-T_{k k}\right)$ is obviously $(-1)^{k} \operatorname{det} T$ (since it is the product of the diagonal entries of T) so the constant term of $\operatorname{det}(t I-A)$ is also $(-1)^{k} \operatorname{det} T=(-1)^{k} \operatorname{det} A$. For a second proof, recall that if $f: R \rightarrow S$ is a ring homomorphism, and if $F: M_{k \times k}(R) \rightarrow M_{k \times k}(S)$ is the induced map on matrices, then $f(\operatorname{det} A)=\operatorname{det} F(A)$ for every matrix A. Evaluating a polynomial at $t=0$ is a ring homomorphism from $F[t] \rightarrow F$, so given the characteristic polynomial of $t I-A$, we have that

$$
\operatorname{det}(0 I-A)=\operatorname{det}(-A)=(-1)^{k} A
$$

On the other hand, evaluating any polynomial at $t=0$ simply recovers the constant term of the polynomial.

2. Matrices are linear transformations

Let R be a commutative ring and $R^{\oplus k}$ the free module on k generators. Show there is a ring isomorphism

$$
T: M_{k \times k}(R) \rightarrow \operatorname{hom}_{R}\left(R^{\oplus k}, R^{\oplus k}\right)
$$

given by sending a matrix A to the homomorphism T_{A} sending the i th standard basis element of $R^{\oplus k}$ to the element

$$
\sum_{j=1}^{k} A_{j i} e_{j}
$$

If you are lazy and don't want to do every part of the proof, here is the most important part: prove that $T_{A B}=T_{A} \circ T_{B}$, so that matrix multiplication is sent to composition of functions.

REMARK 2.1. (Recall that a homomorphism from $R^{\oplus k}$ to any module M is determined by the choice of k elements x_{1}, \ldots, x_{k} in M, simply be declaring that $e_{i} \in R^{\oplus k}$ get sent to x_{i}.)

Remark 2.2. To be clear, the target of T is the set of all left R-module homomorphisms from $R^{\oplus k}$ to itself.

REmark 2.3. By the way, this ring isomorphism is the justification for saying that a linear map from a finite-dimensional vector space over F to itself is the same thing as a matrix - in this case, $R=F$, and every finite-dimensional vector space over F is isomorphic to $F^{\oplus k}$ for some k.

Let e_{i} denote the i th standard basis element of $R^{\oplus k}$-it is the element which has the multiplicative unit 1 in the i th coordinate, and 0 elsewhere. Let A be a matrix. By definition, T assigns to A the linear transformation taking e_{i} to the element

$$
\sum_{j=1}^{k} A_{j i} e_{j} \in R^{\oplus k}
$$

This defines the R-linear map T_{A} completely, as a module homomorphism from a free module is determined by what it does to the standard basis elements. We show that T defines a ring homomorphism:
(1) T sends the multiplicative identity to the multiplicative identity. The identity of $M_{k \times k}$ is the identity matrix I, whose entries consist of 1 along the diagonal and 0 elsewhere. Then T_{I} sends e_{i} to $\sum A_{j i} e_{j}=e_{i}$, so T_{I} acts as the identity on the standard basis elements. For any other element $v=\sum a_{j} e_{j}$ then, $T_{I}(v)=$ $T_{I}\left(\sum a_{j} e_{j}\right)=\sum a_{j} T_{I}\left(e_{j}\right)=\sum a_{j} e_{j}=v . \quad$ So T_{I} is indeed the identity homomorphism from $R^{\oplus k}$ to itself.
(2) $T(A+B)=T_{A}+T_{B}$. The matrix $A+B$ has (i, j) th entry given by $A_{i j}+B_{i j}$. Then $T_{A+B}\left(e_{i}\right)=\sum(A+B)_{j i} e_{j}=\sum\left(A_{j i}+\right.$ $\left.B_{j i}\right) e_{j}=\sum A_{j i} e_{j}+\sum B_{j i} e_{j}=T_{A}\left(e_{i}\right)+T_{B}\left(e_{i}\right)$. It follows that for an arbitrary vector $v, T_{A+B}(v)=T_{A}(v)+T_{B}(v)$.
(3) $T_{A B}=T_{A} \circ T_{B}$. Note that the (j, i) th entry of the matrix $A B$ is given by $(A B)_{j i}=\sum_{l} A_{j l} B_{l i}$. Then $T_{A B}\left(e_{i}\right)=\sum_{j}\left(\sum_{l} A_{j l} B_{l i}\right) e_{j}=$ $\sum_{l} \sum_{j} A_{j l} B_{l i} e_{j}=\sum_{l} T_{A}\left(B_{l i} e_{l}\right)=T_{A}\left(\sum_{l} B_{l i} e_{l}\right)=T_{A}\left(T_{B}\left(e_{i}\right)\right)$. Since $T_{A B}\left(e_{i}\right)=T_{A} \circ T_{B}\left(e_{i}\right)$ for all standard basis elements e_{i}, it follows that $T_{A B}(v)=T_{A} \circ T_{B}(v)$ for all elements $v \in R^{\oplus k}$, so $T_{A B}=T_{A} \circ T_{B}$.

3. Some Cayley-Hamilton applications

Let \mathbb{F} be a field of characteristic p. Let A be an upper-triangular $k \times k$ matrix with entries in \mathbb{F}.
(a) Assume A 's diagonal entries are equal to 1 . Show that for the values $(3,3),(5,5)$, and $(4,2)$ of $(k, p), A^{k}$ is equal to $(-1)^{k-1} I$.
(b) With the hypothesis as in part (a), prove that A is an element whose order must divide k or $2 k$.
(a) The determinant of $t I-A$ is given by

$$
\operatorname{det}\left[\begin{array}{cccc}
t-1 & -A_{12} & \ldots & -A_{1 k} \\
0 & t-1 & \ldots & -A_{2 k} \\
0 & 0 & \ldots & \vdots \\
0 & 0 & \ldots & t-1
\end{array}\right]=(t-1)^{k}
$$

By the binomial theorem, this means that the determinant of $t I-A$ is given by the polynomials
$t^{3}-3 t^{2}+3 t-1, \quad t^{4}-4 t^{3}+6 t^{2}-4 t+1, \quad t^{5}-5 t^{4}+10 t^{3}-10 t^{2}+5 t-1$
for $k=3,4,5$ respectively. If F is a field of characteristic 3 , the first polynomial is $t^{3}-1$, so by Cayley-Hamilton, $A^{3}=I$. If F is a field of characteristic 2 , the second polynomial is $t^{4}+1$, so by Cayley-Hamilton, $A^{4}=-I$. In characteristic 5 , the last polynomial is $t^{5}-1$, so by CayleyHamilton, $t^{5}=I$.
(b) If $A^{k}=(-1)^{k-1} I$, if k is odd, clearly $A^{k}=I$, so the order of A as an element of $G L_{k}(F)$ must divide k. Likewise, if k is even, then $A^{2 k}=(-I)^{2}=I$, so the order of A must divide $2 k$.

4. More Cayley-Hamilton

Let F be a field and A an $k \times k$ matrix with entries in F. When you want to compute $f(A)$ where $f(t)$ is some high-degree polynomial in t, note that by the division algorithm for polynomials, we can write

$$
f(t)=q(t) \Delta(t)+r(t)
$$

where $\Delta(t)$ is the characteristic polynomial of A. Then we have

$$
f(A)=q(A) \Delta(A)+r(A)=r(A)
$$

since $\Delta(A)=0$ by the Cayley-Hamilton theorem. This reduces a potential costly calculation into two steps: A division of polynomials (to find r) and then a degree $k-1$ computation given by evaluating $r(A)$.
(a) If A is a 2×2 matrix which is not invertible in F, prove that A^{2} is always a scalar multiple of A. Moreover, prove that A^{2} is obtained from A by scaling via the trace of A.
(b) Let A be a 3×3 matrix which is not invertible, and which has trace zero. Compute A^{1000} in terms of A^{2} and the degree 1 coefficient of $\Delta(t)$. Derive a general formula for A^{N} in terms of A^{2} and the degree 2 coefficient of $\Delta(t)$.
(c) Let

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
1 & 0 & -1 \\
5 & 2 & -1
\end{array}\right]
$$

Compute A^{2014} using the methods above.
(d) What is A^{2014} if you consider A as a matrix with entries in $\mathbb{F}=\mathbb{Z} / 2 \mathbb{Z}$?
(a) If A is not invertible in a field F, then its determinant must be zero. (Recall a matrix is invertible in a ring if and only if its determinant is a unit int he ring.) Since the constant term of the characteristic polynomial of A is the determinant, Cayley-Hamilton tells us A must satisfy the equation

$$
A^{2}+a A=0
$$

where $t^{2}+a t$ is the characteristic polynomial of A. Hence $A^{2}=-a A$, and A^{2} is some scalar multiple of A.
(b) By before, the determinant of A is $(-1)^{k-1}$ times the constant term of the characteristic polynomial, while the trace is -1 times the degree ($k-1$) term fo the characteristic polynomial. So if both of these is zero, the characteristic polynomial of A is of the form t^{3}-at for some number $a \in F$. So let us divide the polynomial t^{1000} by this polynomial and find the remainder. We find that

$$
t^{1000}=\left(t^{3}-a t\right) q(t)+r(t)
$$

where $q(t)=t^{997}+a t^{995}+a^{2} t^{993}+a^{3} t^{991}+\ldots+a^{498} t$, or

$$
q(t)=\sum a^{i} t^{1000-3-2 i}
$$

and $r(t)=a^{499} t^{2}$. Let us evaluate this polynomial on A :

$$
A^{1000}=\left(A^{3}-a A\right) q(A)+r(A)
$$

Sine $A^{3}-a A$ is the chracteristic polynomial of A, by Cayley-Hamilton, it evaluates to zero. Hence

$$
A^{1000}=r(A)=a^{499} A^{2}
$$

where a is the degree 1 coefficient of the characteristic polynomial. More generally, if we divide the polynomial t^{N} by the characteristic polynomial, we have that

$$
q(t)=\sum a^{i} t^{N-3-2 i}
$$

so if i is the largest integer for which $N-3-2 i>0$,

$$
A^{N}=r(A)=a^{i+1} t^{N-3-2 i+1}
$$

Note that $N-3-2 i+1$ must be equal to 1 or to 2 .
(c) Let us compute the characteristic polynomial of A :

$$
\operatorname{det}(t I-A)=\operatorname{det}\left[\begin{array}{ccc}
t-1 & -2 & -3 \\
-1 & t & 1 \\
-5 & -2 & t+1
\end{array}\right]
$$

which equals

$$
(t-1)\left[t^{2}+t+2\right]+2(-t-1+5)-3(2+5 t)=t^{3}-16 t
$$

Now, $2014-3=2011$, so the value of i from the previous problem is 1005. So by the above work, we know that A^{2014} must equal

$$
A^{2014}=16^{1006} A^{2}
$$

(d) If F has characteristic $2,16 x=0$ for any $x \in F$, so the entries of the matrix $16^{1006} A^{2}$ are all zero. So $A^{2014}=0$.

Rings and ideals

5. Basics of rings

(a) Give an example of a non-commutative ring with a zero divisor. (Make sure to identify the zero divisor.)
(b) Given an example of a commutative ring with a zero divisor.
(a) Consider the ring of 2 by 2 matrices with real entries. Then the elements

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], B=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

satisfy

$$
A B=0
$$

Hence both B and A are zero divisors in this ring. (Indeed, we can consider A and B as matrices with coefficients in any ring R with $1 \neq 0$, and these would be examples of zero divisors in the ring $M_{2 \times 2}(R)$.) Note that although $A B=0, B A=A \neq 0$.
(b) Consider the ring $\mathbb{Z} / 6 \mathbb{Z}$. Then $\overline{2} \cdot \overline{3}=\overline{6}=0$. Or, if you consider the ring $\mathbb{R}[t] /\left(t^{2}\right)$, we have that $\bar{t} \cdot \bar{t}=\bar{t}^{2}=0$.

6. Prime ideals

Let R be a commutative ring. An ideal I is called prime if whenever $x y \in I$, we have that either $x \in I$ or $y \in I$.
(a) Let $f \in R$ be an irreducible element and R a PID. Show that the ideal generated by f is prime.
(b) Recall that a commutative ring is called a domain if it has no zero divisors. Show that if I is a prime ideal of R, then R / I is a domain.
(a) Let $x y \in(f)$. This means that $x y=a f$ for some $a \in R$. Since R is a PID, every element allows for unique factorization by irreducibles. That means that $x=\prod q_{i}$ for some irreducibles q_{i}, possibly repeated, and $y=\prod p_{i}$. Then $x y=\prod q_{i} \prod p_{i}$ is a factorization of $x y$ by primes. At the same time, since $a \in R, a$ also has a prime factoriation $a=\prod r_{i}$ where each r_{i} is some irreducible element. Note that $a f=f \prod r_{i}$ is a prime factorization for $a f$, and hence for $x y$. By uniqueness of prime factorization, f-or a unit multiple of it-must show up in the product $\prod q_{i} \prod p_{i}$. This means $f=u^{\prime} p_{i}$ or $u^{\prime} q_{i}$ for some i and some unit u^{\prime}. Without loss of generality assume $f=u^{\prime} p_{i}$. Then f divides x, hence $x \in(f)$.
(b) By definition, $\bar{f}=0 \in R / I$ if and only if $f \in I$. Well, for $\bar{x}, \bar{y} \in R / I$, we have that $x y \in I \Longrightarrow x \in I$ or $y \in I$. Hence if $\bar{x} \cdot \bar{y}=0$, we have that $\bar{x}=0$ or $\bar{y}=0$.

7. Prime ideals and maximal ideals

Let R be a commutative ring.
(a) Show that every maximal ideal in R is a prime ideal.
(b) Show that if R is a PID, then every non-zero prime ideal is maximal.
(a) Let $I \subset R$ be a maximal ideal. Let $x y \in I$. If x is not in I, let (I, x) be the smallest ideal containing I and x. (This is the image of the R module homomorphism $I \oplus R \rightarrow R$ sending $(f, 1) \mapsto f+x$ for $f \in I$.) This must be equal to R since $I \subset(I, x) \subset R$ and I is maximal. Hence it contains $1 \in R$. This means

$$
1=f+g x
$$

for some $f \in I, g \in R$. But then $y=f y+g x y$ by multiplying both sides by y on the right. So the righthand side is a sum of two elements in I. That is, $y \in I$.
(b) Suppose I is a prime ideal in a PID R. Then $I=(f)$ for some $f \in R$ since R is a PID. We assume $f \neq 0$ since we can assume $I \neq\{0\}$. If $x y \in I$, then either x or y is divisible by f by definition of prime ideal. Now, if we have an ideal $I \subset J \subset R$, then $J=(z)$ by definition of PID, and $I \subset J \Longrightarrow f=a z$ for some $a \in R$. By the previous discussion, either a or z is divisible by f. If z is, then $(z) \subset(f)$, so $J=I$. If a is, then $f=a^{\prime} f z \Longrightarrow 0=f-a^{\prime} f z=\left(1-a^{\prime} z\right) f$. If $I \neq\{0\}$, then since R is a domain, $a^{\prime} z=1$, so z is a unit, meaning $J=R$. Thus $I \subset J \subset R \Longrightarrow J=I$ or $J=R$ whenever I is a prime ideal. That is, in a PID, every prime ideal I is maximal.

8. A ring that is not a PID

(a) Let F be a field, and let $R=F\left[x_{1}, x_{2}\right]$ be the ring of polynomials with two variables. Exhibit an ideal in R that is not principal.
(b) Show that $\mathbb{Z}[x]$-the ring of polynomials with \mathbb{Z} coefficients-is not a principal ideal domain.
(a) Let $I=\left(x_{1}, x_{2}\right)$ be the ideal generated by the polynomial x_{1}, and by the polynomial x_{2}. So this is the set of all polynomials that have no constant terms. If there is some polynomial f such that $a f=x_{1}$ for $a \in R$, we must have that f is constant, or is equal to some multiple of x_{1}. Likewise, if there is some polynomial f such that $b f=x_{2}$, we must have that f is constant, or is equal to some constant multiple of x_{2}. If a single polynomial f generates both x_{1} and x_{2}, f must therefore be a constant polynomial (non-zero by assumption). But since f would then be a unit, $(f)=R$, so the only principal ideal containing $\left(x_{1}, x_{2}\right)$ is R itself. That is, I cannot be a principal ideal.
(b) Let $R=\mathbb{Z}[x]$. Consider the ideal I generated by $2 \in \mathbb{Z}$ and by the polynomial $x \in \mathbb{Z}[x]$. This is the image of the homomorphism $R \oplus R \rightarrow$ R where $(a, b) \mapsto 2 a+b x$. Let (f) be a principal ideal containing I then there must exist $p \in R$ such that $p f=2$, and $q \in R$ such that $q f=x$. That $p f=2$ means f must equal ± 1 or ± 2. That $q f=x$ means that f must equal ± 1 or $\pm x$. This means $f= \pm 1$, so f is a unit in R, and we have that $(f)=R$. So the only principal ideal containing I is R itself, and I is not a principal ideal.

Modules

9. \mathbb{Z}-modules

(a) Show that a \mathbb{Z}-module is the same thing as an abelian group.
(b) Show that a map of \mathbb{Z}-modules (i.e., a \mathbb{Z}-linear homomorphism between \mathbb{Z}-modules) is the same thing as a homomorphism of abelian groups.
(a) Let M be an abelian group. To give M the structure of a \mathbb{Z}-module, we must exhibit a map

$$
\mathbb{Z} \times M \rightarrow M
$$

such that $(a+b) x=a x+b x, 1 x=x$ (where 1 is the multiplicative unit of \mathbb{Z}) and $(a b) x=a(b x)$ for all $a, b \in \mathbb{Z}, x \in M$. Well, every element of \mathbb{Z} can be expressed as $a=1+\ldots+1$, or as $a=-1+\ldots+-1$ where the summation runs $|a|$ times. Hence
$a x=(1+\ldots+1) x=x+\ldots+x \quad(a \geq 0), \quad a x=-(1+\ldots+-1) x=-x+\ldots+-x \quad(a \leq 0)$
so the map $\mathbb{Z} \times M \rightarrow M$ is completely determined by the abelian group structure of M. In other words, for any set M, the collection of abelian group structures on M is in bijection with the collection of \mathbb{Z}-module structure on M.
(b) Let M and N be \mathbb{Z}-modules. Note that the set \mathcal{F} of \mathbb{Z}-module homomorphisms from M to N has a function to the set \mathcal{H} of abelian group homomorphisms $M \rightarrow N$, since every R-module homomorphism is by definition an abelian group homomorphism (together with an additional property). We show that this function is a bijection. It is obviously an injection. It is also a surjection: A \mathbb{Z}-module homomorphism $f: M \rightarrow N$ is an abelian group homomorphism such that $f(a x)=a f(x)$. Well, since any $a \in \mathbb{Z}$ can be expressed as a sum of 1 (as above), we have that

$$
f(a x)=f(x+\ldots+x)=f(x)+\ldots+f(x)=a f(x)
$$

where the middle equality follows from the fact that f is a group homomorphism. So any abelian group homomorphism is automatically a \mathbb{Z}-module homomorphism.

10. $\mathbb{Z}[t]$-modules

Show that a $\mathbb{Z}[t]$-module structure on an abelian group M is the same thing as giving an abelian group homomorphism from M to itself.

Let \mathcal{I} be the set of all ring homomorphisms from $\mathbb{Z}[t]$ to the set $\operatorname{End}(M)$ of endomorphisms of M to itself. By previous homework, we know this is in bijection with the set of all $\mathbb{Z}[t]$-module structures on M. So we will show that the set of ring homomorphisms from $\mathbb{Z}[t]$ to any target ring S is in bijection with elements of S. This shows that the set of module structures on M is in bijection with elements of $\operatorname{End}(M)$. Well, if $f: \mathbb{Z}[t] \rightarrow S$ is a ring homomorphism, we have an element $f(t) \in S$. On the other hand, since f is a ring homomorphism, and $f(1)=1_{S}$, the value of $f(t)$ determines the value of f on every element of $\mathbb{Z}[t]$:

$$
\begin{aligned}
f\left(a_{0}+a_{1} t+\ldots a_{k} t^{k}\right) & =f\left(a_{0}\right)+f\left(a_{1} t\right)+\ldots+f\left(a_{k} t^{k}\right) \\
& =f(1+\ldots+1)+f((1+\ldots+1) \cdot t)+\ldots+f((1+\ldots+1) \cdot t \cdot \ldots \cdot t) \\
& =(f(1)+\ldots+f(1))+(f(t)+\ldots+f(t))+\left(f(t)^{k}+\ldots+f(t)^{k}\right)
\end{aligned}
$$

where the summations happen $a_{0}, a_{1}, \ldots, a_{k}$ times, and if a_{i} is negative, we mean the summation $-1+\ldots+-1$ with $\left|a_{i}\right|$ many terms. Thus, if $f(t)=$ $f^{\prime}(t)$, then $f=f^{\prime}$, so this assignment is an injection. On the other hand, an arbitrary choice of element $s \in S$ determines a ring homomorphism f by assigning $f(t)=s$, and extending by the equation above. So the assignment $f \mapsto f(t)$ is a surjection as well.

11. Submodules

Let M be a left R-module. Recall that an R-submodule of M is a subgroup $N \subset M$ such that $r x \in N$ for all $r \in R, x \in N$.
(a) Show that the intersection of two submodules is a submodule.
(b) If R is a commutative ring and $R=M$, show that a submodule of M is the same thing as an ideal of R.
(a) The intersection of two subgroups is a subgroup. On the other hand, if $x \in N \cap N^{\prime}$, then $r x \in N$ and $r x \in N^{\prime}$ if N, N^{\prime} are submodules. Hence $r x \in N \cap N^{\prime}$.
(b) By definition, an ideal I of a commutative ring R is a subgroup of R for which $x \in I \Longrightarrow r x \in I$ for all $r \in R$. Well, every ring R is a module over itself, with an R-module structure given by the function

$$
R \times R \rightarrow R, \quad(x, y) \mapsto x y
$$

and by associativity and distributivity, this turns R into a left module over itself.

12. Not all modules are free

Give an example of a ring R and a left module M such that M is not isomorphic to a free R-module.

Let $R=\mathbb{Z}$ and $M=\mathbb{Z} / n \mathbb{Z}$ for $|n| \geq 2$. Then $\mathbb{Z} / n \mathbb{Z}$ has $|n| \geq 2$ elements, while $R^{\oplus k}$ has either infinitely elements, or 1 element (if $\bar{k}=$ $0)$. Hence the two sets cannot be in bijection, let alone admit a module isomorphism between them.

Computations

13. Computations with matrices

Consider the matrices

$$
\left[\begin{array}{cc}
1 & 4 \\
5 & 7
\end{array}\right], \quad\left[\begin{array}{ll}
1 & 3 \\
7 & 9
\end{array}\right], \quad\left[\begin{array}{ll}
2 & 4 \\
6 & 8
\end{array}\right] .
$$

(a) Which of them are invertible as elements of $M_{2 \times 2}(\mathbb{Z})$?
(b) Which are invertible as elements of $M_{2 \times 2}(\mathbb{Z} / 2 \mathbb{Z})$?
(c) Which are invertible as elements of $M_{2 \times 2}(\mathbb{Z} / 7 \mathbb{Z})$?
(a) Compute the determinants of each matrix. If they are equal to $\pm 1 \in \mathbb{Z}$, then the determinants are units in the ring \mathbb{Z}, hence the matrices are invertible in \mathbb{Z}.
(b) Now take the determinants of each matrix and reduce modulo 2. This is non-zero if and only if the matrix is invertible.
(c) Likewise, reduce the integer determinants modulo 7. This is non-zero if and only if the matrix is invertible.

14. Polynomial roots

Consider the polynomials

$$
t^{3}+2 t+1, \quad t^{4}+1, \quad t^{2}+3
$$

(a) Which of these are irreducible elements of $\mathbb{Z} / 2 \mathbb{Z}[t]$?
(b) Which of these are irreducible elements of $\mathbb{Z} / 3 \mathbb{Z}[t]$?
(c) Which of these are irreducible elements of $\mathbb{Z} / 5 \mathbb{Z}[t]$?

For degree 3 and degree 2 polynomials, any factorization into non-units must have some factor of a linear polynomial, so irreducibility is equivalent to the absence of a root. So I'll leave those polynomials to you. But the fourth-degree polynomial is less trivial, since non-existence of a root doesn't guarantee irreducibility. For $p=2,5$, note that -1 admits a square root, since $1^{2}=1=-1$ modulo 2 , while $2^{2}=4=-1$ modulo 5 . So the polynomial $t^{4}+1=\left(t^{2}+1\right)\left(t^{2}+1\right)$ modulo 2 , and $t^{4}+1=\left(t^{2}-2\right)\left(t^{2}+2\right)$ modulo 5 . For $p=3$, the process is more complicated - the only obvious strategy we have at our disposal in this class is to test by brute force whether the polynomial can be factored by degree 2 polynomials.

Classification of finitely generated PIDs

15. Statement

State the classification of finitely generated modules over a PID.
Let R be a principal ideal domain (PID). Suppose that M is a finitely generated R-module. ${ }^{1}$ Then M is isomorphic to the module

$$
R^{\oplus n_{0}} \oplus R /\left(p_{1}^{n_{1}}\right) \oplus \ldots \oplus R /\left(p_{l}^{n_{l}}\right)
$$

where $n_{0} \geq 0, n_{i} \geq 1$, and $l \geq 0$ are integers, and each p_{i} is an irreducible element of R. If M is isomorphic to another module of the form

$$
R^{\oplus m_{0}} \oplus R /\left(q_{1}^{m_{1}}\right) \oplus \ldots \oplus R /\left(q_{k}^{m_{k}}\right)
$$

where each q_{i} is an irreducible element, and $m_{0} \geq 0, m_{i} \geq 1, k \geq 0$, then $k=l, m_{0}=n_{0}$, and there is some re-ordering of indices so that q_{i} is a unit multiple of p_{i} and $n_{i}=m_{i}$ for all $i .{ }^{2}$

[^0]
16. Classifying abelian groups

(a) How does the theorem let us classify finitely generated abelian groups?
(b) Classify all abelian groups of order 12 .
(c) Classify all abelian groups of order 16 .
(a) Take $R=\mathbb{Z}$. This is a PID since every ideal of \mathbb{Z} is equal to an ideal of the form $(n)=n \mathbb{Z}$ for $n \in \mathbb{Z}$. The irreducible elements of \mathbb{Z} are those numbers $\pm p$ where p is a prime. Finally, any \mathbb{Z}-module is nothing more than an abelian group, so we can conclude that any finitely generated abelian group is isomorphic to an abelian group of the form

$$
\mathbb{Z}^{\oplus n_{0}} \oplus \mathbb{Z} /\left(p_{1}^{n_{1}}\right) \oplus \ldots \oplus \mathbb{Z} /\left(p_{l}^{n_{l}}\right) .
$$

(b) The prime factorization of 12 is $3 \cdot 2 \cdot 2$. Because the size of the abelian group M must be 12, and the size of an abelian group as above is given by

$$
p_{1}^{n_{1}} \cdot \ldots \cdot p_{l}^{n_{l}}
$$

we see that the possible choices of p_{i}, n_{i} are as follows:

$$
p_{1}=2, p_{2}=1, p_{3}=1, n_{i}=1, \quad p_{1}=2, p_{3}=1, n_{1}=2, n_{2}=1 .
$$

So M must be isomorphic to

$$
\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z} \quad \text { or } \quad \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z}
$$

(c) Likewise, the possible choices for p_{i} and n_{i} are
$p_{1}=p_{2}=p_{3}=p_{4}=2, n_{1}=n_{2}=n_{3}=n_{4}=1, \quad p_{1}=p_{2}=p_{3}=2, n_{1}=n_{2}=1, n_{3}=2$,
$p_{1}=p_{2}=2, n_{1}=n_{2}=2, \quad p_{1}=p_{2}=2, n_{1}=1, n_{2}=3, \quad p_{1}=2, n_{1}=4$.
So we have the possible groups

$$
\begin{gathered}
\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}, \quad \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z} \\
\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}, \quad \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}, \quad \mathbb{Z} / 16 \mathbb{Z} .
\end{gathered}
$$

17. Another way to phrase classification of abelian groups

(a) Let k, m, n be integers. Prove that $\mathbb{Z} / k \mathbb{Z} \cong \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$ if and only if $k=m n$ and m, n are relatively prime.
(b) Assume the classification of finitely generated abelian groups stated in class. Prove: If A is a finitely generated abelian group, it is isomorphic to a group of the form

$$
\mathbb{Z} / n_{1} \mathbb{Z} \oplus \ldots \oplus \mathbb{Z} / n_{k} \mathbb{Z}
$$

where n_{i} divides n_{i+1} for all $1 \leq i \leq k-1$.
(a) Let $(1,1) \in \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$. Since the order of this group is $m n$, we know that the order of $(1,1)$ must divide $m n$. On the other hand,

$$
(1,1)+\ldots+(1,1)=(\bar{a}, \bar{a})
$$

where the summation happens a times. For the first coordinate to equal zero, $\bar{a}=0$ modulo m, and for the left coordinate to equal zero, we must have that a is a multiple of n. That is, a must be a multiple of both m and n. But since m and n are relatively prime, the smallest multiple of both m and n is $m n$ itself. On the other hand, the order of any element must divide the order of the group containing it so we have that $a \mid m n$ and $m n \leq a$. This means $a=m n$, so $(1,1)$ generates the whole group. On the other hand, suppose that $\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z} \cong \mathbb{Z} / k \mathbb{Z}$. Then we must have that $k=m n$ since isomorphic groups have the same order. If m, n are not relatively prime, then let $a=\operatorname{lcm}(m, n)<m n$. Then any element $(x, y) \in \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$ would have order dividing a^{3} and in particular, order strictly less than $m n$. So $\mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z}$ could not have any element of order $m n$, and in particular, cannot be cyclic.

[^1]
Groups

18. Your common mistakes

(a) Give an example of a group G, and an abelian subgroup $H \subset G$, such that H is not normal in G.
(b) Given an example of a group G, and a sequence of subgroups

$$
G_{1} \subset G_{2} \subset G
$$

such that $G_{1} \triangleleft G_{2}$ and $G_{2} \triangleleft G$, but G_{1} is not normal in G.
(a) Let $H \subset S_{3}$ be the subgroup generated by the 2 -cycle (12). This is not normal, since (12) is conjugate to (13) but (13) $\notin H$. On the other hand, it is clearly abelian, since it's cyclic.
(b) Let $G=S_{4}$ and $G_{2}=V$ be the group of order 4 in S_{4} isomorphic to the Klein 4 -group. V has elements

$$
1,(12)(34),(13)(24),(23)(14) .
$$

Note that since V is abelian, any subgroup of it is normal in V-in particular, let G_{1} be the subgroup generated by (12)(34). Then $G_{1} \triangleleft G_{2}$. And $G_{2} \triangleleft G$ since every element of S_{4} with cycle shape given by two disjoint 2-cycles is in V, while every element of V is of this cycle shape. We know that the group generated by (12)(34) is not normal in S_{4} itself-for instance, $(12)(34)$ is conjugate to $(13)(24)$, but the latter is not in the subgroup generated by the former.

19. Sylow's Theorems

Let n_{p} denote the number of Sylow p-subgroups of G.
(a) $*$ Let $G=S_{4}$. Compute n_{2}.
(b) Let $G=S_{4}$. Compute n_{3}.
(c) Let $G=D_{2 p}$, the dihedral group with $2 p$ elements, where $p>2$ is a prime. Compute n_{2} and n_{p}.
(a) Since $|G|=24=8 \cdot 3$, the Sylow theorems tell us that n_{2} divides 3 , and is equal to 1 modulo 2 . Thus n_{2} is equal to 3 or to 1 . You can exhibit a subgroup of order 8 , and show it is not a normal subgroup. Thus n_{2} must equal 3 .
(b) n_{3} must divide 8 , and be equal to 1 modulo 3 . The only such numbers are 1 or 4 . Well, there is an obvious subgroup of order 3 given by the group generated by (123). This group cannot be normal because it does not contain all elements with the same cycle shape -for instance, it does not contain (124). Hence n_{3} must be 4. (Recall that, by the Sylow theorems, $n_{p}=1$ if and only if there is only one Sylow p-subgroup.)
(c) n_{p} has to equal 1 because it must divide 2 , and equal 1 modulo p. To compute n_{2}, note that n_{2} must equal 1 modulo 2 , while it must also divide p. So we show that $n_{2} \neq 1$. Note that the element $g \in D_{2 p}$ given by reflection is an element of order 2 , so it generates a group of order 2. Note that if you conjugate g by a rotation of $2 \pi / p$, you do not get back g. Hence $n_{2} \neq 1$.

20. Actions and orbit-stabilizer

(a) Show that $H \triangleleft G$ if and only if the normalizer of H is all of G.
(b) Let G be a finite group, and $H \subset G$ a subgroup. Show that the number of subgroups of G conjugate to H is equal to the size of G, divided by the order of the normalizer of H.
(c) Let $x \in G$ be an element, with $|G|$ finite. Show that the number of elements conjugate to x is equal to the size of G, divided by the number of elements that commute with x.
(a) Definition of normalizer.
(b) Orbit-stabilizer theorem; G acts by conjugation on the set of all subgroups of G. The stabilizer of a subgroup is the normalizer, and the orbit of H is the set of all subgroups conjugate to H.
(c) G acts on itself by conjugation. The elements that fix x are those that commute with x. The orbit of x is the set of all elements conjugate to x.

21. Prove Lagrange's Theorem

Prove Lagrange's Theorem.
Let $H \subset G$ be a subgroup of a finite group G. Lagrange's Theorem says that $|H|$ must divide $|G|$. Note that H acts on G via multiplication:

$$
H \times G \rightarrow G, \quad(h, g) \mapsto h g
$$

Then G is a disjoint union of the orbits of the H-action:

$$
G=\coprod_{\text {orbits }} \mathcal{O}
$$

Claim: For each orbit, $|\mathcal{O}|=|H|$. If we have this claim, we see that

$$
|G|=|H|+\ldots+|H|
$$

so $|H|$ divides $|G|$. To prove this claim, note that the orbit of $1_{G} \in G$ is

$$
\left\{h 1_{G} \in G \text { s.t. } h \in H\right\}=\{h \in G \text { s.t. } h \in H\}=H
$$

so the orbit of 1_{G} is the set H, meaning $\left|\mathcal{O}_{1_{G}}\right|=|H|$. On the other hand, if \mathcal{O}_{g} is another orbit, we have a bijection $\mathcal{O}_{1} \rightarrow \mathcal{O}_{g}$ by sending

$$
x \mapsto x g \in \mathcal{O}_{g}, \quad x \in \mathcal{O}_{1_{G}} .
$$

This is a bijection because it has an inverse given by sending $h g \in \mathcal{O}_{g}$ to $h g g^{-1} \in \mathcal{O}_{1_{G}}$. Hence every orbit is in bijection with $\mathcal{O}_{1_{G}}$, meaning $|\mathcal{O}|=|H|$ for every orbit.

22. Cayley's Theorem

(a) Show that every group acts on itself.
(b) Show that every finite group is isomorphic to a subgroup of S_{n} for some n. This is called Cayley's Theorem.
(a) There are two equivalent ways to exhibit a group action of G on a set X. By exhibiting a group homomorphism

$$
\phi: G \rightarrow \operatorname{Aut}_{\text {Set }}(X)
$$

or a function

$$
G \times X \rightarrow X, \quad(g, x) \mapsto g x
$$

satisfying
(a) $1_{G} x=x$ for all $x \in X$,
(b) $g(h x)=(g h) x$ for all $g, h \in G$ and $x \in X$.

A group G acts on itself by the function

$$
G \times G \rightarrow G, \quad(g, x) \mapsto g x
$$

where $g x$ is the group multiplication. (a) follows from the definition of identity, and (b) follows from associativity of G 's multiplication.
(b) Since we have a group action, we have a group homomorphism $\phi: G \rightarrow$ $\operatorname{Aut}_{S_{\text {Set }}(X) \text {. If we show this is an injection, by the first isomorphism }}$ theorem, we have the group isomorphisms

$$
G \cong G /\left\{1_{G}\right\} \cong \operatorname{image}(\phi) \subset \operatorname{Aut}_{S e t}(X) \cong S_{|X|} .
$$

This last group is the symmetric group on $|X|$ elements. To show ϕ is an injection, we must show that it has trivial kernel-that is, that $\phi_{g}=\mathrm{id}$ implies that $g=1_{G}$. But this follows from the uniqueness of the identity element of a group.

23. Groups of order 8

Recall the quaternion ring, otherwise called the Hamiltonians. Consider the set

$$
Q=\{ \pm 1, \pm i, \pm j, \pm k\} \subset \mathbb{R}^{4}
$$

where

$$
1=(1,0,0,0) \quad i=(0,1,0,0) \quad j=(0,0,1,0) \quad k=(0,0,0,1)
$$

(a) Show that Q is a group of order 8 .
(b) Show that Q is non-abelian.
(c) Write down all subgroups of Q.
(d) * Show that Q is not isomorphic to $D_{2 \cdot 4}=D_{8}$, the dihedral group with 8 elements.
(a) Claim: Let R be a ring, and let R^{\times}be the subset of all elements in R with a multiplicative inverse. (I.e., the set of units of R.) Then R^{\times}is a group. Proof of claim: Since 1_{R} is a unit, with inverse itself, R^{\times}has an identity by definition of 1_{R}. Multiplication is associative since multiplication in R is associative, and every element admits an inverse by definition of units for a ring. Now that the claim is proven, denote the quaternions by \mathbb{H}. Recall that the quaternions are a ring, and that every non-zero element of the ring admits a multiplicative inverse. (This was a homework problem.) Then it follows that $\mathbb{H}-\{0\}$ is a group (non-abelian, since \mathbb{H} 's multiplication is not commutative), with identity given by the multiplicative identity $(1,0,0,0)$ of \mathbb{H}. We must show that $Q \subset \mathbb{H}-\{0\}$ is a subgroup. In any ring, we have that $(-a) \cdot b=-(a \cdot b)=a \cdot(-b)$, so to show closure, it suffices to show that

$$
i \cdot j=k, \quad i \cdot k=-j, \quad j \cdot k=i
$$

which you can check. Moreover, can see that for any $g \in Q, g \cdot(-g)=1$, so every element has an inverse. Since $Q \subset \mathbb{H}-\{0\}$ is a subgroup, it is in particular a group. To check it has order 8 , we simply count the elements - there are 8 of them.
(b) $i j=k$ while $j i=-k$.
(c) Tedious, but we can do this systematically as follows.
(a) We have the subgroups generated by each element. So for instance,

$$
\langle i\rangle=\{1, i,-1,-i\}
$$

is a subgroup of order 4 , as are $\langle j\rangle$ and $\langle k\rangle$. These subgroups contain a unique subgroup of order 2 , the one generated by -1 . Note that $\langle-j\rangle=\langle j\rangle$.
(b) Now suppose that a subgroup contains both i and j. Then it contains $-1=i^{2},-i=i^{3}, k=i j$, and $-k=j i$. That is, the whole group. So we have that the subgroups of Q are given by

where the arrows indicate inclusions. Note that each of $\langle i\rangle,\langle j\rangle,\langle k\rangle$ are each subgroups of order 4 , hence subgroups of index 2 , hence normal.
(c) As a side note, observe that $\langle-1\rangle=\{1,-1\}$ is the center of this group. As a result, $\langle-1\rangle$ is normal in Q. It is the unique subgroup of order 2 in Q.
(d)

24. Some big theorems

(a) Let p be a prime number. If $n \in \mathbb{Z}$ is not divisible by p, prove that

$$
n^{p-1}-1
$$

is divisible by p. This is called Fermat's Little Theorem. (Hint: If $\mathbb{Z} / p \mathbb{Z}$ is a field, what can you say about $\mathbb{Z} / p \mathbb{Z}-\{0\}$?)
(b) Show that every finite group is isomorphic to a subgroup of S_{n} for some n. This is called Cayley's Theorem. (Hint: Every group acts on itself by left multiplication.)
(a) If p is a prime, $\mathbb{Z} / p \mathbb{Z}$ is a field. So $\mathbb{Z} / p \mathbb{Z}-\{0\}$ is a group. Let \bar{n} be an element. Since $\mathbb{Z} / p \mathbb{Z}-\{0\}$ has order $p-1$, the order of \bar{n} must divide $p-1$. Which is to say,

$$
\bar{n}^{p-1}=\overline{1}
$$

where $\overline{1}$ is the multiplicative unit of \mathbb{Z} ? $p \mathbb{Z}$. So we have that for any $\bar{n} \in \mathbb{Z} / p \mathbb{Z}-\{0\}$,

$$
\bar{n}^{p-1}-\overline{1}=\overline{0} \in \mathbb{Z} /[\mathbb{Z}
$$

So for any number n not divisible by p,

$$
n^{p-1}-1
$$

equals zero modulo p-i.e., is divisible by p.
(b) We did this in a previous problem on this practice set.

[^0]: ${ }^{1}$ This means that for some $k \geq 0, M$ admits some homomorphism of R-modules, $R^{\oplus k} \rightarrow M$ which is a surjection.
 ${ }^{2}$ Of course, $R^{\oplus n_{0}}$ is given the usual R-module structure as a free R-module, while $R /\left(p_{i}^{n_{i}}\right)$ is given the quotient module structure:

 $$
 R \times R /\left(p_{i}^{n_{i}}\right) \rightarrow R /\left(p_{i}^{n_{i}}\right), \quad(f, \bar{g}) \mapsto \overline{f g} .
 $$

[^1]: ${ }^{3}$ For $(x, y)+\ldots+(x, y)=(a x, a y)$. Since $a=b m, a x=b(m x)=0 \in \mathbb{Z} / m \mathbb{Z}$. Likewise, since $a=n c, a y=0 \in \mathbb{Z} / n \mathbb{Z}$. So $(1,1)$ must have order dividing a.

