
Math 122 Fall 2014 Solutions to Practice Problems for Final

Practice Problems for matrices and Cayley-Hamilton

1. Basics in characteristic polynomials

(a) Let F be a field, and A a k× k matrix with entries in F . Show that A
is not conjugate to an upper-triangular matrix unless its characteristic
polynomial can be factored into (possibly non-distinct) linear polyno-
mials in F [t].

(b) Given an example of a matrix in a field F whose characteristic polyno-
mial cannot be factored into linear polynomials.

(c) Prove that if A is a k × k matrix with entries in a field F , its charac-
teristic polynomial ∆(t) is a degree k polynomial in F [t], and that the
degree k − 1 coefficient of ∆(t) is −tr(A). (Here, tr(A) is the trace of
A—the sum of its diagonal entries.)

(d) Prove that the constant term of ∆(t) is (−1)k detA.

(a) Suppose that A is conjugate to an upper-triangular matrix, so T =
BAB−1 where T is upper-triangular and B is invertible. Recall the
characteristic polynomial of T and A are the same, because

det(tI−T ) = det(tI−BAB−1) = det(B(tI−A)B−1) = detB detB−1(tI−A) = det(tI−A).

On the other hand,

tI − T =


t− T11 −T12 . . . −T1k

0 t− T22 . . . −T2k

0 0 . . .
...

0 0 . . . t− Tkk


is an upper-triangular matrix, so its determinant is given by multiplying
its diagonal entries:

det(tI − T ) = (t− T11) . . . (t− Tkk)

so the characteristic polynomial of A factors into linear polynomials.
(b) Let us choose R = F to be our field. We know R has no square root of
−1, so we reverse-engineer a matrix whose characteristic polynomial is
t2 + 1 = 0. For instance, [

0 −1
1 0

]
.

(c) For a field F , consider an injective ring homomorphism F ↪→ F into
an algebraically closed field F . Any matrix A ∈Mk×k(F ) is conjugate
to an upper-triangular matrix with entries in F (by the classification
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of finitely generated modules over PIDs). And the characteristic poly-
nomial of an upper-triangular matrix is

det(tI − T ) = (t− T11) . . . (t− Tkk)

which is clearly a degree k polynomial. Moreover, the characteristic
polynomial of A is unchanged by conjugation, so we conclude that the
characteristic polynomial of A is also degree k. (Note that each linear
factor, t− Tii, is a polynomial in F [t], but may not be a polynomial in
F [t].) To prove the statement about trace: Note that the degree k − 1
portion of the above polynomial is given by

−T11 − . . .− Tkk = −tr(T ).

But trace is also left unchanged by conjugation. Here is a two-step
proof: First,

tr(AB) =

k∑
i=1

(AB)ii =

k∑
i=1

k∑
j=1

AijBji =

k∑
i=1

k∑
j=1

BjiAij =

k∑
j=1

k∑
i=1

BjiAij =

k∑
j=1

(BA)jj = tr(BA).

Plugging in B = D−1C and A = D, we see that

trD−1CD = trC

Since the trace of T is given by −tr(T ), the trace of the original matrix
is also given by negative its trace.

(d) Here are two proofs: Again, use that determinants are also unchanged
by conjugation. So det(A) = det(T ) if T is an upper-triangular matrix
conjugate to A. The constant term of (t − T11) . . . (t − Tkk) is obvi-
ously (−1)k detT (since it is the product of the diagonal entries of T )
so the constant term of det(tI − A) is also (−1)k detT = (−1)k detA.
For a second proof, recall that if f : R → S is a ring homomorphism,
and if F : Mk×k(R)→Mk×k(S) is the induced map on matrices, then
f(detA) = detF (A) for every matrix A. Evaluating a polynomial at
t = 0 is a ring homomorphism from F [t] → F , so given the character-
istic polynomial of tI −A, we have that

det(0I −A) = det(−A) = (−1)kA.

On the other hand, evaluating any polynomial at t = 0 simply recovers
the constant term of the polynomial.
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2. Matrices are linear transformations

Let R be a commutative ring and R⊕k the free module on k generators.
Show there is a ring isomorphism

T : Mk×k(R)→ homR(R⊕k, R⊕k)

given by sending a matrix A to the homomorphism TA sending the ith
standard basis element of R⊕k to the element

k∑
j=1

Ajiej .

If you are lazy and don’t want to do every part of the proof, here is the most
important part: prove that TAB = TA ◦ TB , so that matrix multiplication
is sent to composition of functions.

Remark 2.1. (Recall that a homomorphism from R⊕k to any module
M is determined by the choice of k elements x1, . . . , xk in M , simply be
declaring that ei ∈ R⊕k get sent to xi.)

Remark 2.2. To be clear, the target of T is the set of all left R-module
homomorphisms from R⊕k to itself.

Remark 2.3. By the way, this ring isomorphism is the justification
for saying that a linear map from a finite-dimensional vector space over F
to itself is the same thing as a matrix—in this case, R = F , and every
finite-dimensional vector space over F is isomorphic to F⊕k for some k.

Let ei denote the ith standard basis element of R⊕k—it is the element
which has the multiplicative unit 1 in the ith coordinate, and 0 elsewhere.
Let A be a matrix. By definition, T assigns to A the linear transformation
taking ei to the element

k∑
j=1

Ajiej ∈ R⊕k.

This defines the R-linear map TA completely, as a module homomorphism
from a free module is determined by what it does to the standard basis
elements. We show that T defines a ring homomorphism:

(1) T sends the multiplicative identity to the multiplicative identity.
The identity of Mk×k is the identity matrix I, whose entries con-
sist of 1 along the diagonal and 0 elsewhere. Then TI sends ei
to
∑
Ajiej = ei, so TI acts as the identity on the standard ba-

sis elements. For any other element v =
∑
ajej then, TI(v) =

TI(
∑
ajej) =

∑
ajTI(ej) =

∑
ajej = v. So TI is indeed the

identity homomorphism from R⊕k to itself.
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(2) T (A + B) = TA + TB. The matrix A + B has (i, j)th entry
given by Aij + Bij . Then TA+B(ei) =

∑
(A+ B)jiej =

∑
(Aji +

Bji)ej =
∑
Ajiej +

∑
Bjiej = TA(ei)+TB(ei). It follows that for

an arbitrary vector v, TA+B(v) = TA(v) + TB(v).
(3) TAB = TA ◦ TB . Note that the (j, i)th entry of the matrix AB is

given by (AB)ji =
∑

lAjlBli. Then TAB(ei) =
∑

j(
∑

lAjlBli)ej =∑
l

∑
j AjlBliej =

∑
l TA(Bliel) = TA(

∑
lBliel) = TA(TB(ei)).

Since TAB(ei) = TA ◦ TB(ei) for all standard basis elements ei, it
follows that TAB(v) = TA ◦ TB(v) for all elements v ∈ R⊕k, so
TAB = TA ◦ TB .
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3. Some Cayley-Hamilton applications

Let F be a field of characteristic p. Let A be an upper-triangular k× k
matrix with entries in F.

(a) Assume A’s diagonal entries are equal to 1. Show that for the values
(3, 3), (5, 5), and (4, 2) of (k, p), Ak is equal to (−1)k−1I.

(b) With the hypothesis as in part (a), prove that A is an element whose
order must divide k or 2k.

(a) The determinant of tI −A is given by

det


t− 1 −A12 . . . −A1k

0 t− 1 . . . −A2k

0 0 . . .
...

0 0 . . . t− 1

 = (t− 1)k.

By the binomial theorem, this means that the determinant of tI −A is
given by the polynomials

t3−3t2 +3t−1, t4−4t3 +6t2−4t+1, t5−5t4 +10t3−10t2 +5t−1

for k = 3, 4, 5 respectively. If F is a field of characteristic 3, the first
polynomial is t3 − 1, so by Cayley-Hamilton, A3 = I. If F is a field of
characteristic 2, the second polynomial is t4+1, so by Cayley-Hamilton,
A4 = −I. In characteristic 5, the last polynomial is t5−1, so by Cayley-
Hamilton, t5 = I.

(b) If Ak = (−1)k−1I, if k is odd, clearly Ak = I, so the order of A
as an element of GLk(F ) must divide k. Likewise, if k is even, then
A2k = (−I)2 = I, so the order of A must divide 2k.
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4. More Cayley-Hamilton

Let F be a field and A an k × k matrix with entries in F . When you
want to compute f(A) where f(t) is some high-degree polynomial in t, note
that by the division algorithm for polynomials, we can write

f(t) = q(t)∆(t) + r(t)

where ∆(t) is the characteristic polynomial of A. Then we have

f(A) = q(A)∆(A) + r(A) = r(A)

since ∆(A) = 0 by the Cayley-Hamilton theorem. This reduces a potential
costly calculation into two steps: A division of polynomials (to find r) and
then a degree k − 1 computation given by evaluating r(A).

(a) If A is a 2 × 2 matrix which is not invertible in F , prove that A2 is
always a scalar multiple of A. Moreover, prove that A2 is obtained
from A by scaling via the trace of A.

(b) Let A be a 3 × 3 matrix which is not invertible, and which has trace
zero. Compute A1000 in terms of A2 and the degree 1 coefficient of
∆(t). Derive a general formula for AN in terms of A2 and the degree 2
coefficient of ∆(t).

(c) Let

A =

 1 2 3
1 0 −1
5 2 −1

 .
Compute A2014 using the methods above.

(d) What is A2014 if you consider A as a matrix with entries in F = Z/2Z?

(a) If A is not invertible in a field F , then its determinant must be zero.
(Recall a matrix is invertible in a ring if and only if its determinant
is a unit int he ring.) Since the constant term of the characteristic
polynomial of A is the determinant, Cayley-Hamilton tells us A must
satisfy the equation

A2 + aA = 0

where t2 + at is the characteristic polynomial of A. Hence A2 = −aA,
and A2 is some scalar multiple of A.

(b) By before, the determinant of A is (−1)k−1 times the constant term of
the characteristic polynomial, while the trace is −1 times the degree
(k − 1) term fo the characteristic polynomial. So if both of these is
zero, the characteristic polynomial of A is of the form t3 − at for some
number a ∈ F . So let us divide the polynomial t1000 by this polynomial
and find the remainder. We find that

t1000 = (t3 − at)q(t) + r(t)
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where q(t) = t997 + at995 + a2t993 + a3t991 + . . .+ a498t, or

q(t) =
∑

ait1000−3−2i,

and r(t) = a499t2. Let us evaluate this polynomial on A:

A1000 = (A3 − aA)q(A) + r(A).

Sine A3−aA is the chracteristic polynomial of A, by Cayley-Hamilton,
it evaluates to zero. Hence

A1000 = r(A) = a499A2

where a is the degree 1 coefficient of the characteristic polynomial.
More generally, if we divide the polynomial tN by the characteristic
polynomial, we have that

q(t) =
∑

aitN−3−2i

so if i is the largest integer for which N − 3− 2i > 0,

AN = r(A) = ai+1tN−3−2i+1.

Note that N − 3− 2i+ 1 must be equal to 1 or to 2.
(c) Let us compute the characteristic polynomial of A:

det(tI −A) = det

 t− 1 −2 −3
−1 t 1
−5 −2 t+ 1


which equals

(t− 1)[t2 + t+ 2] + 2(−t− 1 + 5)− 3(2 + 5t) = t3 − 16t.

Now, 2014 − 3 = 2011, so the value of i from the previous problem is
1005. So by the above work, we know that A2014 must equal

A2014 = 161006A2.

(d) If F has characteristic 2, 16x = 0 for any x ∈ F , so the entries of the
matrix 161006A2 are all zero. So A2014 = 0.
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Rings and ideals

5. Basics of rings

(a) Give an example of a non-commutative ring with a zero divisor. (Make
sure to identify the zero divisor.)

(b) Given an example of a commutative ring with a zero divisor.

(a) Consider the ring of 2 by 2 matrices with real entries. Then the elements

A =

[
0 1
0 0

]
, B =

[
1 0
0 0

]
satisfy

AB = 0.

Hence both B and A are zero divisors in this ring. (Indeed, we can
consider A and B as matrices with coefficients in any ring R with 1 6= 0,
and these would be examples of zero divisors in the ring M2×2(R).)
Note that although AB = 0, BA = A 6= 0.

(b) Consider the ring Z/6Z. Then 2 · 3 = 6 = 0. Or, if you consider the

ring R[t]/(t2), we have that t · t = t
2

= 0.
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6. Prime ideals

Let R be a commutative ring. An ideal I is called prime if whenever
xy ∈ I, we have that either x ∈ I or y ∈ I.

(a) Let f ∈ R be an irreducible element and R a PID. Show that the ideal
generated by f is prime.

(b) Recall that a commutative ring is called a domain if it has no zero
divisors. Show that if I is a prime ideal of R, then R/I is a domain.

(a) Let xy ∈ (f). This means that xy = af for some a ∈ R. Since R is
a PID, every element allows for unique factorization by irreducibles.
That means that x =

∏
qi for some irreducibles qi, possibly repeated,

and y =
∏
pi. Then xy =

∏
qi
∏
pi is a factorization of xy by primes.

At the same time, since a ∈ R, a also has a prime factoriation a =
∏
ri

where each ri is some irreducible element. Note that af = f
∏
ri is a

prime factorization for af , and hence for xy. By uniqueness of prime
factorization, f—or a unit multiple of it—must show up in the product∏
qi
∏
pi. This means f = u′pi or u′qi for some i and some unit u′.

Without loss of generality assume f = u′pi. Then f divides x, hence
x ∈ (f).

(b) By definition, f = 0 ∈ R/I if and only if f ∈ I. Well, for x, y ∈ R/I,
we have that xy ∈ I =⇒ x ∈ I or y ∈ I. Hence if x · y = 0, we have
that x = 0 or y = 0.
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7. Prime ideals and maximal ideals

Let R be a commutative ring.

(a) Show that every maximal ideal in R is a prime ideal.
(b) Show that if R is a PID, then every non-zero prime ideal is maximal.

(a) Let I ⊂ R be a maximal ideal. Let xy ∈ I. If x is not in I, let (I, x)
be the smallest ideal containing I and x. (This is the image of the R-
module homomorphism I ⊕ R → R sending (f, 1) 7→ f + x for f ∈ I.)
This must be equal to R since I ⊂ (I, x) ⊂ R and I is maximal. Hence
it contains 1 ∈ R. This means

1 = f + gx

for some f ∈ I, g ∈ R. But then y = fy + gxy by multiplying both
sides by y on the right. So the righthand side is a sum of two elements
in I. That is, y ∈ I.

(b) Suppose I is a prime ideal in a PID R. Then I = (f) for some f ∈ R
since R is a PID. We assume f 6= 0 since we can assume I 6= {0}. If
xy ∈ I, then either x or y is divisible by f by definition of prime ideal.
Now, if we have an ideal I ⊂ J ⊂ R, then J = (z) by definition of PID,
and I ⊂ J =⇒ f = az for some a ∈ R. By the previous discussion,
either a or z is divisible by f . If z is, then (z) ⊂ (f), so J = I. If a
is, then f = a′fz =⇒ 0 = f − a′fz = (1 − a′z)f . If I 6= {0}, then
since R is a domain, a′z = 1, so z is a unit, meaning J = R. Thus
I ⊂ J ⊂ R =⇒ J = I or J = R whenever I is a prime ideal. That is,
in a PID, every prime ideal I is maximal.
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8. A ring that is not a PID

(a) Let F be a field, and let R = F [x1, x2] be the ring of polynomials with
two variables. Exhibit an ideal in R that is not principal.

(b) Show that Z[x]—the ring of polynomials with Z coefficients—is not a
principal ideal domain.

(a) Let I = (x1, x2) be the ideal generated by the polynomial x1, and by
the polynomial x2. So this is the set of all polynomials that have no
constant terms. If there is some polynomial f such that af = x1 for
a ∈ R, we must have that f is constant, or is equal to some multiple of
x1. Likewise, if there is some polynomial f such that bf = x2, we must
have that f is constant, or is equal to some constant multiple of x2. If
a single polynomial f generates both x1 and x2, f must therefore be
a constant polynomial (non-zero by assumption). But since f would
then be a unit, (f) = R, so the only principal ideal containing (x1, x2)
is R itself. That is, I cannot be a principal ideal.

(b) Let R = Z[x]. Consider the ideal I generated by 2 ∈ Z and by the
polynomial x ∈ Z[x]. This is the image of the homomorphism R⊕R→
R where (a, b) 7→ 2a + bx. Let (f) be a principal ideal containing I—
then there must exist p ∈ R such that pf = 2, and q ∈ R such that
qf = x. That pf = 2 means f must equal ±1 or ±2. That qf = x
means that f must equal ±1 or ±x. This means f = ±1, so f is a unit
in R, and we have that (f) = R. So the only principal ideal containing
I is R itself, and I is not a principal ideal.

11
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Modules

9. Z-modules

(a) Show that a Z-module is the same thing as an abelian group.
(b) Show that a map of Z-modules (i.e., a Z-linear homomorphism between

Z-modules) is the same thing as a homomorphism of abelian groups.

(a) Let M be an abelian group. To give M the structure of a Z-module,
we must exhibit a map

Z×M →M

such that (a+ b)x = ax+ bx, 1x = x (where 1 is the multiplicative unit
of Z) and (ab)x = a(bx) for all a, b ∈ Z, x ∈M . Well, every element of
Z can be expressed as a = 1 + . . . + 1, or as a = −1 + . . . + −1 where
the summation runs |a| times. Hence

ax = (1+. . .+1)x = x+. . .+x (a ≥ 0), ax = −(1+. . .+−1)x = −x+. . .+−x (a ≤ 0)

so the map Z×M →M is completely determined by the abelian group
structure of M . In other words, for any set M , the collection of abelian
group structures on M is in bijection with the collection of Z-module
structure on M .

(b) Let M and N be Z-modules. Note that the set F of Z-module ho-
momorphisms from M to N has a function to the set H of abelian
group homomorphisms M → N , since every R-module homomorphism
is by definition an abelian group homomorphism (together with an
additional property). We show that this function is a bijection. It
is obviously an injection. It is also a surjection: A Z-module homo-
morphism f : M → N is an abelian group homomorphism such that
f(ax) = af(x). Well, since any a ∈ Z can be expressed as a sum of 1
(as above), we have that

f(ax) = f(x+ . . .+ x) = f(x) + . . .+ f(x) = af(x)

where the middle equality follows from the fact that f is a group ho-
momorphism. So any abelian group homomorphism is automatically a
Z-module homomorphism.

12
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10. Z[t]-modules

Show that a Z[t]-module structure on an abelian group M is the same
thing as giving an abelian group homomorphism from M to itself.

Let I be the set of all ring homomorphisms from Z[t] to the set End(M)
of endomorphisms of M to itself. By previous homework, we know this is in
bijection with the set of all Z[t]-module structures on M . So we will show
that the set of ring homomorphisms from Z[t] to any target ring S is in
bijection with elements of S. This shows that the set of module structures
on M is in bijection with elements of End(M). Well, if f : Z[t]→ S is a ring
homomorphism, we have an element f(t) ∈ S. On the other hand, since f
is a ring homomorphism, and f(1) = 1S , the value of f(t) determines the
value of f on every element of Z[t]:

f(a0 + a1t+ . . . akt
k) = f(a0) + f(a1t) + . . .+ f(akt

k)

= f(1 + . . .+ 1) + f((1 + . . .+ 1) · t) + . . .+ f((1 + . . .+ 1) · t · . . . · t)

= (f(1) + . . .+ f(1)) + (f(t) + . . .+ f(t)) + (f(t)k + . . .+ f(t)k)

where the summations happen a0, a1, . . . , ak times, and if ai is negative, we
mean the summation −1 + . . .+−1 with |ai| many terms. Thus, if f(t) =
f ′(t), then f = f ′, so this assignment is an injection. On the other hand,
an arbitrary choice of element s ∈ S determines a ring homomorphism f by
assigning f(t) = s, and extending by the equation above. So the assignment
f 7→ f(t) is a surjection as well.
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11. Submodules

Let M be a left R-module. Recall that an R-submodule of M is a
subgroup N ⊂M such that rx ∈ N for all r ∈ R, x ∈ N .

(a) Show that the intersection of two submodules is a submodule.
(b) If R is a commutative ring and R = M , show that a submodule of M

is the same thing as an ideal of R.

(a) The intersection of two subgroups is a subgroup. On the other hand, if
x ∈ N ∩N ′, then rx ∈ N and rx ∈ N ′ if N , N ′ are submodules. Hence
rx ∈ N ∩N ′.

(b) By definition, an ideal I of a commutative ring R is a subgroup of R
for which x ∈ I =⇒ rx ∈ I for all r ∈ R. Well, every ring R is a
module over itself, with an R-module structure given by the function

R×R→ R, (x, y) 7→ xy

and by associativity and distributivity, this turns R into a left module
over itself.
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12. Not all modules are free

Give an example of a ring R and a left module M such that M is not
isomorphic to a free R-module.

Let R = Z and M = Z/nZ for |n| ≥ 2. Then Z/nZ has |n| ≥ 2
elements, while R⊕k has either infinitely elements, or 1 element (if k =
0). Hence the two sets cannot be in bijection, let alone admit a module
isomorphism between them.
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Computations

13. Computations with matrices

Consider the matrices[
1 4
5 7

]
,

[
1 3
7 9

]
,

[
2 4
6 8

]
.

(a) Which of them are invertible as elements of M2×2(Z)?
(b) Which are invertible as elements of M2×2(Z/2Z)?
(c) Which are invertible as elements of M2×2(Z/7Z)?

(a) Compute the determinants of each matrix. If they are equal to ±1 ∈ Z,
then the determinants are units in the ring Z, hence the matrices are
invertible in Z.

(b) Now take the determinants of each matrix and reduce modulo 2. This
is non-zero if and only if the matrix is invertible.

(c) Likewise, reduce the integer determinants modulo 7. This is non-zero
if and only if the matrix is invertible.

16
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14. Polynomial roots

Consider the polynomials

t3 + 2t+ 1, t4 + 1, t2 + 3.

(a) Which of these are irreducible elements of Z/2Z[t]?
(b) Which of these are irreducible elements of Z/3Z[t]?
(c) Which of these are irreducible elements of Z/5Z[t]?

For degree 3 and degree 2 polynomials, any factorization into non-units
must have some factor of a linear polynomial, so irreducibility is equivalent
to the absence of a root. So I’ll leave those polynomials to you. But the
fourth-degree polynomial is less trivial, since non-existence of a root doesn’t
guarantee irreducibility. For p = 2, 5, note that −1 admits a square root,
since 12 = 1 = −1 modulo 2, while 22 = 4 = −1 modulo 5. So the
polynomial t4 + 1 = (t2 + 1)(t2 + 1) modulo 2, and t4 + 1 = (t2− 2)(t2 + 2)
modulo 5. For p = 3, the process is more complicated—the only obvious
strategy we have at our disposal in this class is to test by brute force whether
the polynomial can be factored by degree 2 polynomials.
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Classification of finitely generated PIDs

15. Statement

State the classification of finitely generated modules over a PID.
Let R be a principal ideal domain (PID). Suppose that M is a finitely

generated R-module.1 Then M is isomorphic to the module

R⊕n0 ⊕R/(pn1
1 )⊕ . . .⊕R/(pnl

l )

where n0 ≥ 0, ni ≥ 1, and l ≥ 0 are integers, and each pi is an irreducible
element of R. If M is isomorphic to another module of the form

R⊕m0 ⊕R/(qm1
1 )⊕ . . .⊕R/(qmk

k )

where each qi is an irreducible element, and m0 ≥ 0,mi ≥ 1, k ≥ 0, then
k = l,m0 = n0, and there is some re-ordering of indices so that qi is a unit
multiple of pi and ni = mi for all i. 2

1This means that for some k ≥ 0, M admits some homomorphism of R-modules,
R⊕k →M which is a surjection.

2Of course, R⊕n0 is given the usual R-module structure as a free R-module, while
R/(p

ni
i ) is given the quotient module structure:

R×R/(p
ni
i )→ R/(p

ni
i ), (f, g) 7→ fg.

18
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16. Classifying abelian groups

(a) How does the theorem let us classify finitely generated abelian groups?
(b) Classify all abelian groups of order 12.
(c) Classify all abelian groups of order 16.

(a) Take R = Z. This is a PID since every ideal of Z is equal to an ideal of
the form (n) = nZ for n ∈ Z. The irreducible elements of Z are those
numbers ±p where p is a prime. Finally, any Z-module is nothing more
than an abelian group, so we can conclude that any finitely generated
abelian group is isomorphic to an abelian group of the form

Z⊕n0 ⊕ Z/(pn1
1 )⊕ . . .⊕ Z/(pnl

l ).

(b) The prime factorization of 12 is 3 · 2 · 2. Because the size of the abelian
group M must be 12, and the size of an abelian group as above is given
by

pn1
1 · . . . · p

nl

l

we see that the possible choices of pi, ni are as follows:

p1 = 2, p2 = 1, p3 = 1, ni = 1, p1 = 2, p3 = 1, n1 = 2, n2 = 1.

So M must be isomorphic to

Z/2Z⊕ Z/2Z⊕ Z/3Z or Z/4Z⊕ Z/3Z.
(c) Likewise, the possible choices for pi and ni are

p1 = p2 = p3 = p4 = 2, n1 = n2 = n3 = n4 = 1, p1 = p2 = p3 = 2, n1 = n2 = 1, n3 = 2,

p1 = p2 = 2, n1 = n2 = 2, p1 = p2 = 2, n1 = 1, n2 = 3, p1 = 2, n1 = 4.

So we have the possible groups

Z/2Z⊕ Z/2Z⊕ Z/2Z⊕ Z/2Z, Z/2Z⊕ Z/2Z⊕ Z/4Z
Z/4Z⊕ Z/4Z, Z/2Z⊕ Z/8Z, Z/16Z.
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17. Another way to phrase classification of abelian groups

(a) Let k,m, n be integers. Prove that Z/kZ ∼= Z/mZ× Z/nZ if and only
if k = mn and m,n are relatively prime.

(b) Assume the classification of finitely generated abelian groups stated in
class. Prove: If A is a finitely generated abelian group, it is isomorphic
to a group of the form

Z/n1Z⊕ . . .⊕ Z/nkZ
where ni divides ni+1 for all 1 ≤ i ≤ k − 1.

(a) Let (1, 1) ∈ Z/mZ × Z/nZ. Since the order of this group is mn, we
know that the order of (1, 1) must divide mn. On the other hand,

(1, 1) + . . .+ (1, 1) = (a, a)

where the summation happens a times. For the first coordinate to equal
zero, a = 0 modulo m, and for the left coordinate to equal zero, we must
have that a is a multiple of n. That is, a must be a multiple of both m
and n. But since m and n are relatively prime, the smallest multiple of
both m and n is mn itself. On the other hand, the order of any element
must divide the order of the group containing it so we have that a|mn
and mn ≤ a. This means a = mn, so (1, 1) generates the whole group.
On the other hand, suppose that Z/mZ × Z/nZ ∼= Z/kZ. Then we
must have that k = mn since isomorphic groups have the same order.
If m,n are not relatively prime, then let a = lcm(m,n) < mn. Then
any element (x, y) ∈ Z/mZ × Z/nZ would have order dividing a3and
in particular, order strictly less than mn. So Z/nZ× Z/mZ could not
have any element of order mn, and in particular, cannot be cyclic.

3For (x, y) + . . . + (x, y) = (ax, ay). Since a = bm, ax = b(mx) = 0 ∈ Z/mZ.
Likewise, since a = nc, ay = 0 ∈ Z/nZ. So (1,1) must have order dividing a.
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Groups

18. Your common mistakes

(a) Give an example of a group G, and an abelian subgroup H ⊂ G, such
that H is not normal in G.

(b) Given an example of a group G, and a sequence of subgroups

G1 ⊂ G2 ⊂ G
such that G1 / G2 and G2 / G, but G1 is not normal in G.

(a) Let H ⊂ S3 be the subgroup generated by the 2-cycle (12). This is
not normal, since (12) is conjugate to (13) but (13) 6∈ H. On the other
hand, it is clearly abelian, since it’s cyclic.

(b) Let G = S4 and G2 = V be the group of order 4 in S4 isomorphic to
the Klein 4-group. V has elements

1, (12)(34), (13)(24), (23)(14).

Note that since V is abelian, any subgroup of it is normal in V—in
particular, let G1 be the subgroup generated by (12)(34). Then G1/G2.
And G2 / G since every element of S4 with cycle shape given by two
disjoint 2-cycles is in V , while every element of V is of this cycle shape.
We know that the group generated by (12)(34) is not normal in S4

itself—for instance, (12)(34) is conjugate to (13)(24), but the latter is
not in the subgroup generated by the former.
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19. Sylow’s Theorems

Let np denote the number of Sylow p-subgroups of G.

(a) * Let G = S4. Compute n2.
(b) Let G = S4. Compute n3.
(c) Let G = D2p, the dihedral group with 2p elements, where p > 2 is a

prime. Compute n2 and np.

(a) Since |G| = 24 = 8 ·3, the Sylow theorems tell us that n2 divides 3, and
is equal to 1 modulo 2. Thus n2 is equal to 3 or to 1. You can exhibit
a subgroup of order 8, and show it is not a normal subgroup. Thus n2
must equal 3.

(b) n3 must divide 8, and be equal to 1 modulo 3. The only such numbers
are 1 or 4. Well, there is an obvious subgroup of order 3 given by
the group generated by (123). This group cannot be normal because it
does not contain all elements with the same cycle shape—for instance, it
does not contain (124). Hence n3 must be 4. (Recall that, by the Sylow
theorems, np = 1 if and only if there is only one Sylow p-subgroup.)

(c) np has to equal 1 because it must divide 2, and equal 1 modulo p. To
compute n2, note that n2 must equal 1 modulo 2, while it must also
divide p. So we show that n2 6= 1. Note that the element g ∈ D2p given
by reflection is an element of order 2, so it generates a group of order
2. Note that if you conjugate g by a rotation of 2π/p, you do not get
back g. Hence n2 6= 1.
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20. Actions and orbit-stabilizer

(a) Show that H / G if and only if the normalizer of H is all of G.
(b) Let G be a finite group, and H ⊂ G a subgroup. Show that the number

of subgroups of G conjugate to H is equal to the size of G, divided by
the order of the normalizer of H.

(c) Let x ∈ G be an element, with |G| finite. Show that the number of
elements conjugate to x is equal to the size of G, divided by the number
of elements that commute with x.

(a) Definition of normalizer.
(b) Orbit-stabilizer theorem; G acts by conjugation on the set of all sub-

groups of G. The stabilizer of a subgroup is the normalizer, and the
orbit of H is the set of all subgroups conjugate to H.

(c) G acts on itself by conjugation. The elements that fix x are those that
commute with x. The orbit of x is the set of all elements conjugate to
x.
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21. Prove Lagrange’s Theorem

Prove Lagrange’s Theorem.
Let H ⊂ G be a subgroup of a finite group G. Lagrange’s Theorem

says that |H| must divide |G|. Note that H acts on G via multiplication:

H ×G→ G, (h, g) 7→ hg.

Then G is a disjoint union of the orbits of the H-action:

G =
∐

orbits

O

Claim: For each orbit, |O| = |H|. If we have this claim, we see that

|G| = |H|+ . . .+ |H|
so |H| divides |G|. To prove this claim, note that the orbit of 1G ∈ G is

{h1G ∈ G s.t. h ∈ H} = {h ∈ G s.t. h ∈ H} = H

so the orbit of 1G is the set H, meaning |O1G | = |H|. On the other hand,
if Og is another orbit, we have a bijection O1 → Og by sending

x 7→ xg ∈ Og, x ∈ O1G .

This is a bijection because it has an inverse given by sending hg ∈ Og

to hgg−1 ∈ O1G . Hence every orbit is in bijection with O1G , meaning
|O| = |H| for every orbit.
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22. Cayley’s Theorem

(a) Show that every group acts on itself.
(b) Show that every finite group is isomorphic to a subgroup of Sn for some

n. This is called Cayley’s Theorem.

(a) There are two equivalent ways to exhibit a group action of G on a set
X. By exhibiting a group homomorphism

φ : G→ AutSet(X)

or a function
G×X → X, (g, x) 7→ gx

satisfying
(a) 1Gx = x for all x ∈ X,
(b) g(hx) = (gh)x for all g, h ∈ G and x ∈ X.

A group G acts on itself by the function

G×G→ G, (g, x) 7→ gx

where gx is the group multiplication. (a) follows from the definition of
identity, and (b) follows from associativity of G’s multiplication.

(b) Since we have a group action, we have a group homomorphism φ : G→
AutSet(X). If we show this is an injection, by the first isomorphism
theorem, we have the group isomorphisms

G ∼= G/{1G} ∼= image(φ) ⊂ AutSet(X) ∼= S|X|.

This last group is the symmetric group on |X| elements. To show φ
is an injection, we must show that it has trivial kernel—that is, that
φg = id implies that g = 1G. But this follows from the uniqueness of
the identity element of a group.
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23. Groups of order 8

Recall the quaternion ring, otherwise called the Hamiltonians. Consider
the set

Q = {±1,±i,±j,±k} ⊂ R4

where

1 = (1, 0, 0, 0) i = (0, 1, 0, 0) j = (0, 0, 1, 0) k = (0, 0, 0, 1).

(a) Show that Q is a group of order 8.
(b) Show that Q is non-abelian.
(c) Write down all subgroups of Q.
(d) * Show that Q is not isomorphic to D2·4 = D8, the dihedral group with

8 elements.

(a) Claim: Let R be a ring, and let R× be the subset of all elements in
R with a multiplicative inverse. (I.e., the set of units of R.) Then
R× is a group. Proof of claim: Since 1R is a unit, with inverse itself,
R× has an identity by definition of 1R. Multiplication is associative
since multiplication in R is associative, and every element admits an
inverse by definition of units for a ring. Now that the claim is proven,
denote the quaternions by H. Recall that the quaternions are a ring,
and that every non-zero element of the ring admits a multiplicative
inverse. (This was a homework problem.) Then it follows that H−{0}
is a group (non-abelian, since H’s multiplication is not commutative),
with identity given by the multiplicative identity (1, 0, 0, 0) of H. We
must show that Q ⊂ H− {0} is a subgroup. In any ring, we have that
(−a) · b = −(a · b) = a · (−b), so to show closure, it suffices to show that

i · j = k, i · k = −j, j · k = i

which you can check. Moreover, can see that for any g ∈ Q, g ·(−g) = 1,
so every element has an inverse. Since Q ⊂ H − {0} is a subgroup, it
is in particular a group. To check it has order 8, we simply count the
elements—there are 8 of them.

(b) ij = k while ji = −k.
(c) Tedious, but we can do this systematically as follows.

(a) We have the subgroups generated by each element. So for instance,

〈i〉 = {1, i,−1,−i}

is a subgroup of order 4, as are 〈j〉 and 〈k〉. These subgroups
contain a unique subgroup of order 2, the one generated by −1.
Note that 〈−j〉 = 〈j〉.
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(b) Now suppose that a subgroup contains both i and j. Then it
contains −1 = i2,−i = i3, k = ij, and −k = ji. That is, the
whole group. So we have that the subgroups of Q are given by

Q

〈i〉

==

〈j〉

OO

〈k〉

bb

〈−1〉

aa ==OO

1

OO

where the arrows indicate inclusions. Note that each of 〈i〉, 〈j〉, 〈k〉
are each subgroups of order 4, hence subgroups of index 2, hence
normal.

(c) As a side note, observe that 〈−1〉 = {1,−1} is the center of this
group. As a result, 〈−1〉 is normal in Q. It is the unique subgroup
of order 2 in Q.

(d)

27



Fall 2014 Math 122 Final Practice

24. Some big theorems

(a) Let p be a prime number. If n ∈ Z is not divisible by p, prove that

np−1 − 1

is divisible by p. This is called Fermat’s Little Theorem. (Hint: If
Z/pZ is a field, what can you say about Z/pZ− {0}?)

(b) Show that every finite group is isomorphic to a subgroup of Sn for some
n. This is called Cayley’s Theorem. (Hint: Every group acts on itself
by left multiplication.)

(a) If p is a prime, Z/pZ is a field. So Z/pZ− {0} is a group. Let n be an
element. Since Z/pZ− {0} has order p− 1, the order of n must divide
p− 1. Which is to say,

np−1 = 1

where 1 is the multiplicative unit of Z?pZ. So we have that for any
n ∈ Z/pZ− {0},

np−1 − 1 = 0 ∈ Z/[Z
So for any number n not divisible by p,

np−1 − 1

equals zero modulo p—i.e., is divisible by p.
(b) We did this in a previous problem on this practice set.
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