Math 122 Section, 9/18

1 Cyclic Groups

1.1 All cyclic groups are abelian

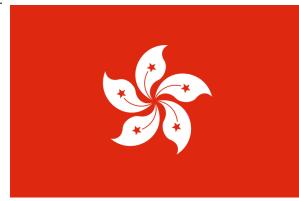
Proof. Call the cyclic group G, which is generated by the element g. Then $\forall x, y \in G, \exists m, n \text{ such that } g^m = x \text{ and } g^n = y$. Therefore

$$xy = g^m g^n = g^{m+n} = g^n g^m = yx$$

Therefore G is abelian.

1.2 examples

- 1. $\mathbb{Z}/n\mathbb{Z}$
- 2. $\mathbb{Z}^{\times}/p\mathbb{Z}$
- 3. nth roots of unity
- 4. \mathbb{Z}
- 5.



2 Product Groups

1. Klein four-group $=C_2 \times C_2$

1	a
b	ab

Smallest non-cyclic group

2. If $\{z \in T \subset \mathbb{C} : |z| = 1\}$, then $\mathbb{C}^{\times} = \mathbb{R}^{\times} \times T$