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HIRO LEE TANAKA

Abstract. There are notes from a talk given in March of 2012 at the Simons Center
Workshop on Supersymmetric Field Theories and Their Implications.
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Acknowledgments. First off, I learned all of this from Si Li, so thank you to Si for
teaching me everything. I’m sure there are some over-simplifications and errors in my
notes and talk, which are due only to me. Thank you also to the organizers (Dan
Freed, Constantin Teleman, and Greg Moore) and the student organizers (Chris Elliott
in particular) for giving me the chance to talk about this material.

Context. Also, these notes are for a talk given on Wednesday, in a workshop which
began on Monday. As such I assume prior knowledge of things like the super-space
construction and multiplets, so one should not take this as an introduction to supersym-
metry in general.

1. Why supersymmetry?

1.0.1. Killing infinities. There’s a lot of physical reasons to learn about supersymmetry,
as we learned this week, but there are a lot of mathematical reasons as well. For instance,
the degeneracies and singularities that show up in some field theories can be killed off
by introducing supersymmetries. In super Yang-Mills, degeneracies only occur in the
one-loop expansions, for instance.
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1.0.2. Localization to finite dimensions. Further, SUSY models can be computed. When
we have a path integral ∫

DφeS[φ]

over some infinite-dimensional space, the path integral for SUSY theories can often be
localized to a finite-dimensional space. Greg Moore talks about this in his notes from
this workshop. I’ve also had conversations with Eric Zaslow where he also motivated
super-symmetry as a method for reducing things to finite dimensional calculations. This
is probably the most important relevance to mathematics. For instance, the space of
holomorphic maps into a complex manifold is finite-dimensional for a fixed Riemann
surface. This shows up in the A model, where we discover Gromov-Witten theory.

1.0.3. The utility of Q. Another huge plus is the importance of the super-symmetry
operators Q. There’s also been talk this week of why we can set a parameter t to go to
∞ or to 0, and one simple explanation for this is that Q-exactness buys you a lot. Often
times we have a action which looks like∫

Dφ exp(Q-exact term + topological Q-closed term).

We write the Q-exact term as Q(A) for some expression A. If we scale the Q-exact term
by a parameter t, we see that there is no dependence on t:

d

dt

∫
DφetQ(A) =

∫
Dφ(QA)etQ(A)

=

∫
DφQ(AetQ(A))(1)

= 0.

(We have used the fact that Q2 = 0.) In general if we want to compute the expectation
value of B, if B is Q-exact, then 〈B〉 = 0. In other words, the correlation function is
only sensitive to Q-cohomology.

There are many examples in which this kind of limit is useful. For instance, if the
action is t| ∂ φ|2, taking t→∞, we see the action must localize to where ∂ φ = 0.

The same computation also occurred in the example of Morse theory we saw earlier
this week, and the passage from Seiberg-Witten theory to Donaldson theory also goes
through a bridge like this.

1.0.4. Why N = 2 Super Yang-Mills? The N = 2 Super Yang-Mills theory packages
together all the things we’ve been learning this week, to give a beautiful relationship
between Seiberg-Witten theory and Donaldson theory. Namely, we can take the pre-
potential in the N = 2 theory and shoot it off to t → ∞ or t → 0. On one end,
by applying S duality, one recovers Seiberg-Witten theory. On the other, we recover
Donaldson theory.

We’ve also talked about the idea of twisting this week, in the talks of Sam and Yuan.
The point is that all this theory is first defined only for R4 via the superspace construc-
tion. Since the supersymmetry operators are spinors, when we try to define the theory
on a general 4-manifold, we may not have a section of a spinor bundle to define a su-
persymmetry operator defined globally on the 4-manifold. The twist allows us to look
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at SUSY operators which become sections of a different bundle, admitting sections, and
in this way we come to study the solutions to Super Yang-Mills (i.e, Donaldson or SW
invariants) on a 4-manifold which is not R4.

2. Superspace for N = 1

In Michael’s example from yesterday, for N = 1 SUSY on dimension 1, fields looked
like φ(x) + ψ(x)θ. We were lucky we had so few θ variables. But today we’re going to
go hardcore: N = 1 to start, but our underlying space will be R4, so we’re going to
dimension 4.

2.1. Superfields for N = 1 and V = R1,3.

2.1.1. The basics. Recall that the underlying manifold of superspace is an affine space
modeled on R4. The super Lie algebra which exponentiates to supserspace is given by

V ⊕Π(S∗) ∼= V ⊕Π(S+ ⊕ S−).

Here, S∗ = S+ ⊕ S−, and the splitting is such that the pairing matrix

Γ : S∗ ⊗ S∗ → V

is given by

Γ =

(
0 σ
σ 0

)
.

The σ are 2-by-2 complex matrices where, if we choose a basis e1, e2 for S+ and a basis
e1̇, e2̇ for S−, there is an isomorphism to V ∼= C4 = span({yµ}) given by

σ : eα ⊗ eβ̇ → σµ
α β̇
yµ.

These σµ are also known as the Dirac matrices.
After exponentiation, we denote the odd coordinates arising from S+ by θ = (θ1, θ2)

and from S− by θ = (θ
1
, θ

2
). The even coordinates will be written x, so in all the

coordinate functions are given by

x = (x0, x1, x2, x3), θ1, θ2, θ
1
, θ

2
.

Under the action of SO(1, 3), the θ and θ are spinors. Since a spinor bundle is trivial
over R4, you can think of these as just having two complex coordinates.

Remark 2.1. The importance of this construction–exponentiating the super Lie algebra
to a super Lie group–is that we get vector fields on super space via left- and right-
invariant vector fields. It is these left-invariant vector fields that act as the supersymme-
tries Qα, Qα̇, and we have (very conveniently!) some right-invariant vector fields Dα, Dα̇

which do not agree with the left-invariant vector fields. (This is because our group is not
abelian.) The wonderful consequence though, is that the vector fields clearly commute
since left- and right-actions of a Lie group commute. We will be using the commutativity
of the Q with the D repeatedly.
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2.1.2. The superfields. What’s important really isn’t so much the superspace as the
superfields.

Superfields are functions on superspace, and for N = 1, they take the form

Φ(x, θ, θ) = φ(x) + θλ(x) + θ λ̃(x) + θ2m(x) + θ
2
m̃(x)+

θσµ θ vµ(x) + θ2 θ ψ̃(x) + θ
2
θψ(x) + θ2 θ

2
D(x).

where you should think of this as a Taylor expansion in the θ and θ variables. Note that:

• Every function of x is a complex-valued function of the even coordinates x.
• λ̃ and λ are unrelated—each is a complex-valued function of x, but have no

dependence on each other. The twiddle is used only so that I did not have to
use another Greek letter to denote the function λ̃. Likewise for m̃, ψ̃.
• The notation θ hasn’t shown up before. What I’m doing here is writing the

representation S = R1,3 ⊗C as C2 ⊗C2. The θα are a basis for the first C2, and
the θ

α
are a basis for the second C2. (α ∈ {1, 2}.)

• there are no terms like θ1θ1—this is because θ1 is an odd variable, so it squares
to zero.
• By θ2 I mean 2θ1θ2 = θαθ

α, and likewise for θ
2
.

• by terms like θψ we really mean θαψα, and ψ is actually a section of the spinor
bundle over R4.
• σµ are just the Dirac matrices. This has appeared in various forms and has also

been called Γ. There’s a complex, 2 by 2 matrix for every µ ∈ {0, 1, 2, 3}. By
convention, the notation θσµθ means

θσµθ = θασµ
αβ̇
θ
β̇
.

It’s not necessary to write out the basis of θα θ
β̇

in this way, but it will be useful
later to verify SUSY.

Remark 2.2. For N = 2, the number of θ will increase. In general we let A ∈ {1, . . . , N}
and we define variables θαA.

Remark 2.3. These have been written out in components, and each component has been
written in previous lectures as a pull-back.

I will write the set of all Φ by F . The same symbol F will show up later in the talk,
but as a prepotential. This is an unfortunate abuse of notation, but F has designated
the space of fields in previous talks, so I am following that convention.

I will also define an operation (•)† : F → F , which is defined on functions by complex
conjugation, and on the odd variables by

θα 7→ θα̇, , θαθβ 7→ (θβ)†(θα)†

2.2. Superalgebra action. Recall that we constructed a super Poincare group yester-
day which acts on superspace. I don’t want to talk about the group, but the point is
that group action generates right-invariant and left-invariant vector fields. Since the
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group wasn’t abelian, these guys are different vector fields, but since it’s left and right
actions, the vector fields commute with each other! Let me write down how these vector
fields act on a superfield.

First, the super algebra generators Qα, Qα̇.

Qα = −i( ∂

∂ θα
− iσµα α̇ θ

α̇
∂µ) Qα̇ = i(

∂

∂ θα
− iσµα α̇θ

α ∂µ).

These operators have also been written τQα , τQα̇
in previous lectures. For example, if

Φ = φ, then

Qα(Φ) = −σµα α̇ θ
α̇
∂µ φ.

The following diagram may be large and confusing, but here are the directions in which
the operators ∂ / ∂ θ and θ act on components: (I am ignoring coefficients.)

φ

θ

��>>>>>>>>

λ
θ

��????????

∂θ

??��������
λ̃

θ

��????????

m

θ

��>>>>>>>>

∂θ

??��������
vµ

θ

��>>>>>>>>

∂θ

??��������
m̃

ψ̃
θ

��>>>>>>>>

∂θ
??��������

ψ

∂θ

@@��������

D

∂θ
??��������

So for instance, the m̃ term in a superfield Φ is sent to zero by the operator Qα, while
the vµ term is sent to a sum of a λ̃ component and a ψ component.

3. Supersymmetric actions and chiral fields

3.1. One verification of SUSY invariance. So in general you might think it’s hard
to write down a function on the space of fields which is invariant under a group action.
And if the word super appears, it must be uber-difficult. Actually, the super makes it
really easy. Here’s a SUSY-invariant Lagrangian, pretty much for free!

Proposition 3.1. The action ∫
d4(x)D(x)

is SUSY-invariant.

Here, D(x) is the component of the superfield Φ as written out above. We’re assuming
that D(x) is compactly supported, not just for integral to be defined, but to use Stokes’s
theorem in a second. Also, I’m going to do out the computation because I really want
to hammer home that these computations are do-able. And the whole philosophy will
be to replace the Qα by Dα, since they are always equal under i∗, as Chris and Michael
wrote it.
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Proof.

Qα

∫
d4xD(x) = Qα

∫
d4xd2θd2 θΦ(x)

=

∫
d4xd2θd2 θ QαΦ(x)

=

∫
d4xd2θd2 θ−i( ∂

∂ θα
− iσµα α̇ θ

α̇
∂µ)Φ(x)

= −
∫
d4xd2θd2 θ{σµα α̇ θ

α̇
∂µΦ(x)}

=

∫
d4x(some coefficients) ∂µ ψ̃(x)

= 0.

Likewise, the Qα̇ derivative is an integral over some derivative, and hence equals zero. �

This D(x) is called the D term of the superfield Φ.
Now I would like to write down a proposition to motivate the notion of chirality.

Proposition 3.2. Let Φ ∈ F be chiral, let K(Φ,Φ†) be a function in Φ,Φ†, and let
W (Φ) be a complex-analytic function in Φ. Then∫

d4xd2θd2 θK(Φ,Φ) +

∫
d4xd2θW (Φ) +

∫
d4xd2 θW (Φ)

is SUSY.

Remark 3.3. Some remarks:

• The term containing the K is called the D term of the action, and the other term
is called the F term of the action.
• By a complex analytic function, I mean you write out W as a power series for

an analytic function in z for some complex variable z, and to evaluate W (Φ), we
simply replace z by Φ.
• Also, when I say K is a function of Φ,Φ, I mean that K can also have a depen-

dence on DΦ, DΦ, and higher derivatives of Φ.
• Also, an action is SUSY if Qα, Qα̇ annihilate it. This simply means that the

action is invariant under the action of the supersymmetry operators.

Before I get to an example, I’d like to discuss chirality a little more.
The right-invariant vector fields Dα, Dα̇ can be computed to be

Dα =
∂

∂ θα
+ iσµα α̇ θ

α̇
∂µ, Dα̇ = − ∂

∂ θα
− iσµα α̇θ

α ∂µ .

Definition 3.4. We say that a superfield Φ is chiral if Dα̇Q = 0 for α̇ = 1, 2.

This cuts down the number of components in Φ;

Proposition 3.5. Let Φ be chiral. Then Φ can be written

Φ(x, θ, θ) = φ(y) + θαψα(y) + θ2F (y)
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under the change of coordinates

yµ = xµ + iθσµ θ .

Remark 3.6. Under this change of coordinates, you need to write down the Taylor ex-
pansion of functions like φ(y) by treating the iθσµ θ component as an infinitesimal dis-
placement of the x coordinate. So, for instance,

θαψα(y) = θαψα(x) + θα(∂µ ψα)iθσµ θ .

Example 3.7 (Free scalar field). Let K(Φ,Φ†) = ΦΦ†. Then you can see that∫
d4xd2θd2 θK =

∫
d4x {φ∆φ+ ψσµ ∂µ ψ+FF}.

Note that the first term is the usual scalar field theory, the second term is the usual Dirac
equations which introduces spinors into the equations of motion, and the last term in
the equation of motion simply sets F = F = 0. It introduces no new dynamics, and F
is simply called an auxiliary field for this reason. It is not always the case that F plays
no role in the equations of motion, however. Greg will talk about examples in which F
will couple to other parts of the fields.

Proof. We already proved the statement for the D term, and one can extend that proof
to arbitrary functions using the chain rule.

So let’s verify SUSY-invariance for the F term. We have

Qα

∫
d4xd2θΦ = Qα

∫
d4xD1D2(Φ)|θ=θ=0

=

∫
d4xQαD1D2(Φ)|θ=θ=0

=

∫
d4xDαD1D2(Φ)|θ=θ=0

=

∫
d4x0

= 0

since any triple-application of the Dα results in zero. Note that one can replace Qα by
Dα since the two operators agree when restricted to the locus θ = θ = 0. This is in
general how most proofs of supersymmetry go—you replace the Q operators by their D
counterparts.

The Q computation uses the same trick, and now uses chirality as well:

Qα̇

∫
d4xd2θΦ =

∫
d4xd2θQα̇Φ

=

∫
d4xd2θDα̇Φ +

∫
d4xd2θ(. . .)σµα α̇θ

α ∂µ Φ

=

∫
d4xd2θ0 + 0

where we have used the chirality of Φ to set the first integrand to zero, and where the
second integral goes to zero because it is the integral of a derivative. �
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4. An aside about N = 2 SYM

So there’s a whole N = 2 superspace formalism that’s more complicated, and there’s
a class of superfields that we can talk about, but let me stay at a more distant level. It
turns out that an N = 2 Lagrangian in SYM will typically look like

1

2π
Im(

∫
d4xd2θd2θTrF(Ψ))

where F is some holomorphic function in a vector multiplet Ψ, and it turns out we can
write this inN = 1 terms using an expansion in θ, to end up with a Lagrangian:

1

4π
ImTr

∫
d4xd2θd2θΦ†e2V ∂F(Φ)

∂ Φ
+

∫
d4xd2θ

1

2

∂ F(Φ)

∂ Φ2
WαWα

which in general may involve higher derivatives of F , but no matter for now. The point
is that this holomorphic function, F , called the prepotential determines the whole theory.
This will be important in Greg’s talk.

5. N=1 Super Yang Mills

Let G be a Lie group and g its Lie algebra.
The Gauge transformations are now given by chiral fields Λ ∈ F ⊗ g. They transform

our fields as follows:

• for V a vector multiplet with V = V †, we have

e2V 7→ eiΛ
†
e2V e−iΛ

(this is just a compact way to write it; you’ll have to write out the expansions
to see how V really transforms.)
• For Φ a chiral multiplet,

Φ 7→ e−iΛΦ.

When g is abelian, you can verify that the even part of the Gauge transformation for
a vector multiplet is the familiar Gauge transformation from ordinary Yang-Mills theory.

5.1. Pure Yang-Mills Action. Now define

Wα =
1

4
D

2
(e−2VDαe

2V )

which is different from the W I wrote in the F term before. (I apologize for the abuse
of notation—but this Wα has components.)

Then we set the Yang-Mills action for N = 1 to be∫
d4xd2θTr(WαWα).

As before, it helps to write out our fields in a more compact form: It turns out that
there is a gauge called the Wess Zumino gauge in which we can write our real vector
multiplet as

V = −θ ∂µ θ Aµ − i θ
2
θλ+ iθ2 θ λ+

1

2
θ2 θ

2
D
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where λ is really the conjugate of λ. Then one can show that the Lagrangian becomes∫
d4xTr(

−1

4
F 2 − iλσµ ∂µ λ+

1

2
D2).

Note that the first term recovers the usual Yang-Mills, the second term is again the
introduction of fermions to our equations of motion, and the last D term is auxiliary.

Remark 5.1. Recall from earlier that I claimed any N = 2 theory depends only on a
holomorphic function F . The pure term I wrote just now is what you obviously get if
you set F = Φ2. As an exercise, you can try to recover Donaldson theory by studying
now the D term contribution (and not just the F term contribution) of the resulting
Lagrangian.
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